Optimized Computational Methods for Disease Prediction Using Machine Learning

Autores/as

  • Misbha Taj, Sasikala Autor/a

DOI:

https://doi.org/10.48047/cfehf924

Palabras clave:

Disease Prediction, XGBoost, Deep Neural Network, LR, Random Forest

Resumen

Accurate disease prediction is crucial for early diagnosis and effective treatment planning. Traditional diagnostic methods often rely on manual examination, which can be time-consuming and prone to errors. This paper presents a comparative analysis of different ML algorithms used for disease prediction and explores optimization techniques such as feature selection, hyperparameter tuning, and ensemble learning. Our experimental results demonstrate the effectiveness of optimized ML models in improving prediction accuracy and reducing computational complexity.   

Descargas

Los datos de descarga aún no están disponibles.

Referencias

applications, Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. Review of deep learning: concepts, CNN architectures, challenges,

future directions. https://doi.org/10.1186/s40537-021-00444-8.

J Big Data 8, 53 (2021). Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural networks: an overview and application in radiology. Insights Imaging 9, 611–629 (2018). https://doi.org/10.1007/s13244018-0639-9.

Descargas

Publicado

2025-04-03

Cómo citar

Optimized Computational Methods for Disease Prediction Using Machine Learning (Misbha Taj, Sasikala , Trans.). (2025). Cuestiones De Fisioterapia, 54(5), 520-524. https://doi.org/10.48047/cfehf924