MOLECULAR CHARACTERIZATION OF CRISPR- CAS SYSTEM IN CLINICAL STAPHYLOCOCCUS AUREUS ISOLATED FROM IRAQI PATIENTS.

Authors

  • Ali Hasan Hayil Ministry of Health, Directorate of Al-Muthanna Health, Iraq Author
  • Saif Mazeel Abed Ministry of Health, Directorate of Al-Muthanna Health, Iraq Author

DOI:

https://doi.org/10.48047/vgn67s66

Keywords:

S. aureus, molecular characterization, CRISPR-Cas systems, Iraqi

Abstract

The aim of study was detection the CRISPR-Cas system genes in Staphylococcus aureus in attempt as a new strategy for the control of resistance of S. aureus. Material and methods: The isolation of S. aureus requires, a total of 50 specimens (abscesses, cellulitis, and other forms of soft tissue infection) were collected from Al-Hussein Teaching Hospital in Al-Muthanna governorate, followed by Kirby-Bauer’s Disc, with some tweaks, will be used to determine antibiotic susceptibility. Antibiotics that were utilized were penicillin, azithromycin, Ciprofloxacin, tetracycline, gentamicin, doxycycline, vancomycin, ofloxacin, chloramphenicol, ampicillin, cefoxitin, and oxacillin. Finally Molecular uncovering of crispr-Cas system, The results: Our results revealed that 25 S.aureus isolate obtained from 50 specimen as following  6 (12%)from cellulitis, 7(14%) from abscesses and12 (24%) from soft tissue infections  S.aureus isolates showed various response to antibiotics depending on antimicrobial resistance percentages the highest resistance noticed in penicillin(100%) and Ampicillin (100%) followed by Chloramphenicol (80%), Vancomycin(60%), Cefoxitin (60%), Ofloxacin (45%), however the isolates showed more sensitive to following antibiotics in addition  All 25 isolates found was not harboured to CRISPER CAS-F1, Furthermore the results reported that all 25 isolates found were not harboured to Cas6 System-II. Conclusion: a high occurrence of multidrug-resistant S. aureus alongside the complete absence of CRISPR-Cas systems, emphasizing the importance of ongoing antimicrobial surveillance and the development of alternative molecular control approaches

Downloads

Download data is not yet available.

References

Espedido, B. A., & Gosbell, I. B. (2012). Chromosomal mutations involved in antibiotic resistance in Staphylococcus aureus. Front Biosci (Schol Ed), 4(3), 900-915.‏

Parvin, M. S., Ali, M. Y., Talukder, S., Nahar, A., Chowdhury, E. H., Rahman, M. T., & Islam, M. T. (2021). Prevalence and multidrug resistance pattern of methicillin resistant S. aureus isolated from frozen chicken meat in Bangladesh. Microorganisms, 9(3), 636.‏

Achek, R., Hotzel, H., Cantekin, Z., Nabi, I., Hamdi, T. M., Neubauer, H., & El-Adawy, H. (2018). Emerging of antimicrobial resistance in staphylococci isolated from clinical and food samples in Algeria. BMC research notes, 11(1), 663.‏

Shehreen, S., Chyou, T. Y., Fineran, P. C., & Brown, C. M. (2019). Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species. Philosophical Transactions of the Royal Society B, 374(1772), 20180384.‏

Shabbir, M. A. B., Shabbir, M. Z., Wu, Q., Mahmood, S., Sajid, A., Maan, M. K., ... & Yuan, Z. (2019). CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Annals of clinical microbiology and antimicrobials, 18(1), 21.‏

Cao, L.; Gao, C.-H.; Zhu, J.; Zhao, L.; Wu, Q.; Li, M.; Sun, B. Identification and functional study of type III-A CRISPR-Cas systems in clinical isolates of Staphylococcus aureus. Int. J. Med. Microbiol. 2016, 306, 686–696.

Zhao, X., Yu, Z., & Xu, Z. (2018). Study the features of 57 confirmed CRISPR loci in 38 strains of Staphylococcus aureus. Frontiers in microbiology, 9, 1591.‏

Li, Q., Li, Y., Tang, Y., Meng, C., Ingmer, H., & Jiao, X. (2019). Prevalence and characterization of Staphylococcus aureus and Staphylococcus argenteus in chicken from retail markets in China. Food Control, 96, 158-164.‏

Liu, Q., Jiang, Y., Shao, L., Yang, P., Sun, B., Yang, S., & Chen, D. (2017). CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus. Acta biochimica et biophysica Sinica, 49(9), 764-770.

Lemaire, S. (2008). Intracellular Staphylococcus aureus, an emerging links to persistent and relapsing infections: factors influencing the activity of antimicrobials against intracellular S. aureus. Doctorat Thesis. Universite Catholique de Louvain, 14, 766-777.‏

Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American society for microbiology, 15(1), 1-23.‏

Harley, J.B. (2016). Laboratory Exercises in Microbiology. 10th ed. McGraw- Hill Education.

Carroll, K. C., Butel, J. S., Morse, S. A., & Mietzner, T. A. (2016). Pathogenesis of Bacterial Infection. Jawetz, Melnick, & Adelberg’s Medical Microbiology, 27.‏

Moran, G. J., Krishnadasan, A., Gorwitz, R. J., Fosheim, G. E., McDougal, L. K., Carey, R. B., & Talan, D. A. (2006). Methicillin-resistant S. aureus infections among patients in the emergency department. New England Journal of Medicine, 355(7), 666-674.‏

Mohanty, A., Mohapatra, K., & Pal, B. (2018). Isolation and identification of staphylococcus aureus from skin and soft tissue infection in sepsis cases, Odisha. J. Pure Appl. Microbiol, 12, 419-424.‏

Foster, C. E., Yarotsky, E., Mason, E. O., Kaplan, S. L., & Hulten, K. G. (2018). Molecular characterization of Staphylococcus aureus isolates from children with periorbital or orbital cellulitis. Journal of the Pediatric Infectious Diseases Society, 7(3), 205-209.‏

Waldenburger, S., Vogel, U., Goebeler, M., & Kolb‐Mäurer, A. (2014). Community‐acquired skin infections caused by Staphylococcus aureus: What is the role of the Panton‐Valentine leukocidin toxin?. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 12(1), 59-66.

Gould, I. M. (2009). Antibiotics, skin and soft tissue infection and meticillin-resistant Staphylococcus aureus: cause and effect. International journal of antimicrobial agents, 34, S8-S11.

Park, Y. J., Kim, C. W., & Lee, H. K. (2019). Interactions between Host Immunity and Skin-Colonizing Staphylococci: No Two Siblings Are Alike. International journal of molecular sciences, 20(3), 718.

Williams, M. R., Costa, S. K., Zaramela, L. S., Khalil, S., Todd, D. A., Winter, H. L., ... & Gallo, R. L. (2019). Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Science translational medicine, 11(490), eaat8329.

Heilmann, C., Ziebuhr, W., & Becker, K. (2019). Are coagulase-negative staphylococci virulent?. Clinical Microbiology and Infection, 25(9), 1071-1080.

Rodrigues dos Santos, L. D., Soares dos Santos, A. E., Ceravolo, I. P., Barbosa Figueiredo, F. J., & Dias-Souza, M. V. (2018). Antibiofilm activity of black tea leaf extract, its cytotoxicity and interference on the activity of antimicrobial drugs. BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 8(5), 3565-3569.

Baur, S., Rautenberg, M., Faulstich, M., Grau, T., Severin, Y., Unger, C., ... & Weidenmaier, C. (2014). A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. Plos pathogens, 10(5), e1004089.

Herman-Bausier, P., Pietrocola, G., Foster, T. J., Speziale, P., & Dufrêne, Y. F. (2017). Fibrinogen activates the capture of human plasminogen by staphylococcal fibronectin-binding proteins. MBio, 8(5), e01067-17.

Blicharz, L., Rudnicka, L., & Samochocki, Z. (2019). Staphylococcus aureus: an underestimated factor in the pathogenesis of atopic dermatitis?. Advances in Dermatology and Allergology/Postȩpy Dermatologii i Alergologii, 36(1), 11.

Sina, H., Ahoyo, T. A., Moussaoui, W., Keller, D., Bankolé, H. S., Barogui, Y., ... & Baba-Moussa, L. (2013). Variability of antibiotic susceptibility and toxin production of Staphylococcus aureus strains isolated from skin, soft tissue, and bone related infections. BMC microbiology, 13(1), 1-9.‏

Rutare, S. (2013). Prevalence of methicillin resistant staphylococcus aureus (mrsa) among paediatric patients admitted in intensive care unit and neonatal intensive care unit at Kenyatta National Hospital-Nairobi, Kenya (Doctoral dissertation, University of Nairobi).‏

Pantosti, A., Sanchini, A., & Monaco, M. (2007). Mechanisms of antibiotic resistance in Staphylococcus aureus. Future microbiology, 2(3), 323-334.‏

Naimi, H. M., Rasekh, H., Noori, A. Z., & Bahaduri, M. A. (2017). Determination of antimicrobial susceptibility patterns in Staphylococcus aureus strains recovered from patients at two main health facilities in Kabul, Afghanistan. BMC infectious diseases, 17(1), 1-7.‏

Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS microbiology reviews, 41(3), 430-449.

Koonin, E. V., Makarova, K. S., and Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37, 67–78. doi: 10.1016/j.mib.2017.05.008.

Hsu, P. D., Lander, E. S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278. doi: 10.1016/j.cell.2014.05.010.

Nuñez, J. K., Kranzusch, P. J., Noeske, J., Wright, A. V., Davies, C. W., and Doudna, J. A. (2014). Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21, 528–534. doi: 10.1038/nsmb.2820.

Hille, F., Richter, H., Wong, S. P., Bratovič, M., Ressel, S., and Charpentier, E. (2018). The biology of CRISPR-Cas: backward and forward. Cell 172, 1239–1259. doi: 10.1016/j.cell.2017.11.032.

Jiang, F., and Doudna, J. A. (2017). CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529. doi: 10.1146/annurev-biophys-062215-010822.

Craft, K. M., Nguyen, J. M., Berg, L. J., and Townsend, S. D. (2019). Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. Med. Chem. Commun. 10, 1231–1241. doi: 10.1039/C9MD00044E.

Downloads

Published

2025-12-23

How to Cite

MOLECULAR CHARACTERIZATION OF CRISPR- CAS SYSTEM IN CLINICAL STAPHYLOCOCCUS AUREUS ISOLATED FROM IRAQI PATIENTS. (A. H. Hayil & S. M. Abed , Trans.). (2025). Cuestiones De Fisioterapia, 54(5), 5024-5033. https://doi.org/10.48047/vgn67s66