Prevalence of Exfoliative and Superantigen Toxin genes in Staphylococcus aureus isolated from clinical specimens in Al-Samawah city
DOI:
https://doi.org/10.48047/3mqdxj31Keywords:
Staphylococcus aureus, Exfoliative toxin genes, superantigensAbstract
Background and Objectives: The success of S. aureus as a pathogen is largely attributed to its ability to produce a diverse array of toxins, including exfoliative toxins and superantigens The aim of this study was to investigate the prevalence of eta, etb, etd and sed genes in S. aureus.
Materials and Methods: In this study, we investigated the prevalence of eta, etb, etd and sed genes using PCR in 100 clinical (8 burns, 68 wounds,11 skin sores,13 urine) isolatesobtained from clinical samples during the year 2023. The samples wereobtained from an educational hospital in southern Iraq.
Results: Overall, 41(59%) suspected S. aureus isolates were identified from a total of 100 samples which includes 29 (11.89%) from wounds, 5 (2.05%) from burn, 5 (2.05%)from skins sore and 2 (0.82%) from urine . 19 (46.34%), 30 (73%), 22 (53.8%) and 38 (92.7%) of the isolates carried the eta, etb and etd genes, respectively. The most common genotype among isolates obtained from clinical samples was seb and the least common was eta .
Conclusion: Through our current study, we have noticed that the rates of eta, etb, etd and sed genes are very high, and this portends in the coming years the possibility of an increase in the number of infections caused by the aforementioned toxins.
Downloads
References
Abbasi Montazeri, E., Khosravi, A. D., Khazaei, S., & Sabbagh, A. (2021). Prevalence of methicillin resistance and superantigenic toxins in Staphylococcus aureus strains isolated from patients with cancer. BMC Microbiology, 21, 1–9.
ALmiyah, S. A. F. (2022). Frequency of exofoliative toxine genes among staphylococcus aureus isolated from burn infection patients in the Specialized Centre for burns of Al–Diwaniyah city. Journal of Pharmaceutical Negative Results, 13(4), 814–819.
Alves, F., Bilbe, G., Blesson, S., Goyal, V., Monnerat, S., Mowbray, C., Muthoni Ouattara, G., Pécoul, B., Rijal, S., & Rode, J. (2018). Recent development of visceral leishmaniasis treatments: successes, pitfalls, and perspectives. Clinical Microbiology Reviews, 31(4), 10–1128.
Alwash, S. J., & Aburesha, R. A. (2021). Detection of toxin-associated genes in seven spa-types of Staphylococcus aureus in Iraq. Indian Journal of Forensic Medicine & Toxicology, 15(3), 4157.
Becker, K., Friedrich, A. W., Lubritz, G., Weilert, M., Peters, G., & Von Eiff, C. (2003). Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. Journal of Clinical Microbiology, 41(4), 1434–1439. https://doi.org/10.1128/JCM.41.4.1434-1439.2003
Chambers, H. F., & DeLeo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7(9), 629–641.
Cižman, M., & Srovin, T. P. (2018). Antibiotic consumption and resistance of gram-negative pathogens (collateral damage). GMS Infectious Diseases, 6.
Das, M., Sabuj, A. A. M., Haque, Z. F., Barua, N., Pondit, A., Mahmud, M. M., Khan, M. F. R., & Saha, S. (2019). Characterization of Staphylococcus aureus isolated from human dental infection. African Journal of Microbiology Research, 13(14), 273–278.
Dunyach-Remy, C., Ngba Essebe, C., Sotto, A., & Lavigne, J.-P. (2016). Staphylococcus aureus toxins and diabetic foot ulcers: role in pathogenesis and interest in diagnosis. Toxins, 8(7), 209.
Gismene, C., Hernández González, J. E., Santisteban, A. R. N., Ziem Nascimento, A. F., dos Santos Cunha, L., de Moraes, F. R., de Oliveira, C. L. P., Oliveira, C. C., Jocelan Scarin Provazzi, P., Pascutti, P. G., Arni, R. K., & Barros Mariutti, R. (2022). Staphylococcus aureus Exfoliative Toxin E, Oligomeric State and Flip of P186: Implications for Its Action Mechanism. International Journal of Molecular Sciences, 23(17). https://doi.org/10.3390/ijms23179857
Gundogan, N., Citak, S., Yucel, N., & Devren, A. (2005). mplesA note on the incidence and antibiotic resistance of Staphylococcus aureus isolated from meat and chicken sa. Meat Science, 69(4), 807–810.
Gurung, R. R., Maharjan, P., & Chhetri, G. G. (2020). Antibiotic resistance pattern of Staphylococcus aureus with reference to MRSA isolates from pediatric patients. Future Science OA, 6(4), FSO464.
Houri, H., Samadpanah, M., Tayebi, Z., Norouzzadeh, R., Malekabad, E. S., & Dadashi, A.-R. (2020). Investigating the toxin profiles and clinically relevant antibiotic resistance genes among Staphylococcus aureus isolates using multiplex-PCR assay in Tehran, Iran. Gene Reports, 19, 100660.
Imanishi, I., Nicolas, A., Caetano, A.-C. B., Castro, T. L. de P., Tartaglia, N. R., Mariutti, R., Guédon, E., Even, S., Berkova, N., & Arni, R. K. (2019). Exfoliative toxin E, a new Staphylococcus aureus virulence factor with host-specific activity. Scientific Reports, 9(1), 16336.
Kolawole, D. O., Adeyanju, A., Schaumburg, F., Akinyoola, A. L., Lawal, O. O., Amusa, Y. B., Köck, R., & Becker, K. (2013). Characterization of colonizing Staphylococcus aureus isolated from surgical wards’ patients in a Nigerian university hospital. PLoS One, 8(7), e68721.
Koosha, R. Z., Fooladi, A. A. I., Hosseini, H. M., & Aghdam, E. M. (2014). Prevalence of exfoliative toxin A and B genes in Staphylococcus aureus isolated from clinical specimens. Journal of Infection and Public Health, 7(3), 177–185. https://doi.org/10.1016/j.jiph.2013.11.003
Kotb, M. (1995). Bacterial Pyrogenic Exotoxins as Superantigens. In CLINICAL MICROBIOLOGY REVIEWS (Vol. 8, Issue 3).
Krakauer, T. (2019). Staphylococcal superantigens: Pyrogenic toxins induce toxic shock. Toxins, 11(3), 1–19. https://doi.org/10.3390/toxins11030178
Ladhani, S., Joannou, C. L., Lochrie, D. P., Evans, R. W., & Poston, S. M. (1999). Clinical, Microbial, and Biochemical Aspects of the Exfoliative Toxins Causing Staphylococcal Scalded-Skin Syndrome (Vol. 12, Issue 2).
Lemaire, G., Jeuffroy, M.-H., & Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. European Journal of Agronomy, 28(4), 614–624.
Lowy, F. D. (1998). Staphylococcus aureus infections. N. Engl. J. Med.
Mariutti, R. B., Souza, T. A. C. B., Ullah, A., Caruso, I. P., de Moraes, F. R., Zanphorlin, L. M., Tartaglia, N. R., Seyffert, N., Azevedo, V. A., & Le Loir, Y. (2015). Crystal structure of Staphylococcus aureus exfoliative toxin D-like protein: Structural basis for the high specificity of exfoliative toxins. Biochemical and Biophysical Research Communications, 467(1), 171–177.
Mozafarianari, A., Kariminik, A., & Tashakori, M. (2019). Evaluation of the frequency of enterotoxin A (SEA) and enterotoxin B (SEB) genes in clinical isolates of Staphylococcus aureus in Rafsanjan, Iran. Avicenna Journal of Clinical Microbiology and Infection, 6(4), 118–121.
Rao, S., Linke, L., Magnuson, R., Jauch, L., & Hyatt, D. R. (2022). Antimicrobial resistance and genetic diversity of Staphylococcus aureus collected from livestock, poultry and humans. One Health, 15, 100407.
Roohollah Zarei, K., Abbas Ali Imani, F., Hamideh Mahmoodzadeh, H., & Elnaz Mehdizadeh, A. (2014). Prevalence of exfoliative toxin A and B genes in Staphylococcus aureus isolated from clinical specimens.
Sergelidis, D., & Angelidis, A. S. (2017). Methicillin‐resistant Staphylococcus aureus: a controversial food‐borne pathogen. Letters in Applied Microbiology, 64(6), 409–418.
Shibabaw, A., Abebe, T., & Mihret, A. (2014). Antimicrobial susceptibility pattern of nasal Staphylococcus aureus among Dessie Referral Hospital health care workers, Dessie, Northeast Ethiopia. International Journal of Infectious Diseases, 25, 22–25.
Somayeh, S. novel electrochemical biosensor for detection of micrococcal nuclease in milk based on a U. D. structurehraneshin S., Taghdisi, S. M., Mortazavi, S. A., Farideh, T. Y., & Abnous, K. (2023). A novel electrochemical biosensor for detection of micrococcal nuclease in milk based on a U-shaped DNA structure. Talanta, 253, 123989.
Sultan, F. B., & Al Meani, S. A. L. (2019). Prevalence of Staphylococcus aureus toxins genes in clinical and food isolates in Iraq. Journal of Pharmaceutical Sciences and Research, 11(2), 636–642.
Tenover, F. C., McDougal, L. K., Goering, R. V, Killgore, G., Projan, S. J., Patel, J. B., & Dunman, P. M. (2006). Characterization of a Strain of Community-AssociatedMethicillin-Resistant Staphylococcus Aureus WidelyDisseminated in the UnitedStates. Journal of Clinical Microbiology, 44(1), 108–118.
Tokajian, S., Haddad, D., Andraos, R., Hashwa, F., & Araj, G. (2011). Toxins and antibiotic resistance in Staphylococcus aureus isolated from a major hospital in Lebanon. International Scholarly Research Notices, 2011.
Wu, D., Li, X., Yang, Y., Zheng, Y., Wang, C., Deng, L., Liu, L., Li, C., Shang, Y., & Zhao, C. (2011). Superantigen gene profiles and presence of exfoliative toxin genes in community-acquired meticillin-resistant Staphylococcus aureus isolated from Chinese children. Journal of Medical Microbiology, 60(1), 35–45.
Yamasaki, O., Tristan, A., Yamaguchi, T., Sugai, M., Lina, G., Bes, M., Vandenesch, F., & Etienne, J. (2006). Distribution of the exfoliative toxin D gene in clinical Staphylococcus aureus isolates in France. Clinical Microbiology and Infection, 12(6), 585–588.
Yamasaki, O., Yamaguchi, T., Sugai, M., Chapuis-Cellier, C., Arnaud, F., Vandenesch, F., Etienne, J., & Lina, G. (2005). Clinical manifestations of staphylococcal scalded-skin syndrome depend on serotypes of exfoliative toxins. Journal of Clinical Microbiology, 43(4), 1890–1893. https://doi.org/10.1128/JCM.43.4.1890-1893.2005
Yassin, H. Y., Melconian, A. K., & Mahmood, S. S. (2022). PREVALENCE OF EXFOLIATIVE TOXIN GENES AMONG CLINICAL ISOLATES OF STAPHYLOCOCCUS AUREUS IN IRAQ. Iraqi Journal of Agricultural Sciences, 53(2), 465–470.
Zhao, H., Xu, S., Yang, H., He, C., Xu, X., Hu, F., Shu, W., Gong, F., Zhang, C., & Liu, Q. (2019). Molecular typing and variations in amount of tst gene expression of TSST-1-producing clinical staphylococcus aureus isolates. Frontiers in Microbiology, 10(JUN). https://doi.org/10.3389/fmicb.2019.01388
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
