Recent Advances in the Pathophysiology and Therapeutic Management of Thalassemia: A Comprehensive Review
DOI:
https://doi.org/10.48047/tw5tza77Keywords:
Thalassemia, β-thalassemia, ineffective erythropoiesis, iron overload, gene therapy, luspatercept, hepcidin, transfusion, chelation therapyAbstract
Thalassemia represents a diverse group of inherited hemoglobinopathies characterized by reduced or absent synthesis of α- or β-globin chains, leading to chronic anemia, ineffective erythropoiesis, and iron overload. Over the past decade, significant progress has been made in understanding the complex molecular and cellular mechanisms underlying thalassemia, particularly in β-thalassemia major and intermedia. Advances in pathophysiology have elucidated the roles of hepcidin suppression, oxidative stress, dysregulated erythroid maturation, and inflammatory signaling in disease progression. These insights have driven the development of innovative therapeutic strategies that go beyond traditional transfusion and iron chelation therapy.
Emerging treatments include gene therapy approaches, such as lentiviral vector-based gene addition and CRISPR-Cas9-mediated genome editing, which offer curative potential. Additionally, novel agents like luspatercept, an erythroid maturation agent, and hepcidin agonists represent promising tools in managing ineffective erythropoiesis and iron dysregulation. While hematopoietic stem cell transplantation remains the only widely accepted curative option, limitations in donor availability and transplant-related risks have restricted its use. This review comprehensively synthesizes recent advances in the pathophysiology and therapeutic landscape of thalassemia, highlighting both established and emerging treatment modalities. It also discusses clinical trial data, implementation challenges, and future directions toward personalized and globally accessible care for individuals affected by thalassemia.
Downloads
References
Anderson, L. J., Holden, S., Davis, B., Prescott, E., Charrier, C. C., Bunce, N. H., ... & Walker, J. M. (2001). Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. European Heart Journal, 22(23), 2171–2179. https://doi.org/10.1053/euhj.2001.2822
Angelucci, E., Matthes-Martin, S., Baronciani, D., Bernaudin, F., Bonanomi, S., Cappellini, M. D., ... & Peters, C. (2014). Hematopoietic stem cell transplantation in thalassemia major: A position statement from the European Blood and Marrow Transplantation (EBMT). Bone Marrow Transplantation, 49(6), 825–831. https://doi.org/10.1038/bmt.2013.210
Cappellini, M. D., Cohen, A., Porter, J., & Taher, A. T. (2020). Guidelines for the management of transfusion dependent thalassaemia (TDT). Thalassaemia International Federation.
Cappellini, M. D., Porter, J. B., Viprakasit, V., Taher, A. T., Coates, T. D., Origa, R., ... & Roselli, E. A. (2020). Luspatercept in patients with transfusion-dependent β-thalassemia. New England Journal of Medicine, 382(13), 1219–1231. https://doi.org/10.1056/NEJMoa1908892
Casu, C., Pettinati, I., Oikonomidou, P. R., & Rivella, S. (2016). Minihepcidins and other hepcidin analogs as potential therapeutic tools. Blood, 127(17), 2089–2097. https://doi.org/10.1182/blood-2015-12-631663
Dussiot, M., Maciel, T. T., Fricot, A., Chartier, C., Negre, O., Veiga, J., ... & Ribeil, J. A. (2014). An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nature Medicine, 20(4), 398–407. https://doi.org/10.1038/nm.3468
Fibach, E., & Rachmilewitz, E. (2008). The role of oxidative stress in hemolytic anemia. Current Molecular Medicine, 8(7), 609–619. https://doi.org/10.2174/156652408786241384
Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y. S., Domm, J., Eustace, B. K., ... & Cornetta, K. (2021). CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. New England Journal of Medicine, 384(3), 252–260. https://doi.org/10.1056/NEJMoa2031054
Gaziev, J., Marziali, M., Isgrò, A., Sodani, P., Lucarelli, G., & Andreani, M. (2020). TCRαβ+/CD19+ cell-depleted haploidentical HSCT in hemoglobinopathies. Frontiers in Immunology, 11, 345. https://doi.org/10.3389/fimmu.2020.00345
Guo, S., Casu, C., Gardenghi, S., Xu, Y., Guo, J., Sun, C. C., ... & Rivella, S. (2021). Targeting TMPRSS6 to improve hepcidin expression and reduce iron overload in β-thalassemia. Blood Advances, 5(8), 2079–2090. https://doi.org/10.1182/bloodadvances.2020003011
Karimi, M., Haghpanah, S., & Azarkeivan, A. (2023). Real-world experience of luspatercept and unmet needs in β-thalassemia management in the Middle East. Mediterranean Journal of Hematology and Infectious Diseases, 15(1), e2023005. https://doi.org/10.4084/mjhid.2023.005
Kautz, L., Jung, G., Valore, E. V., Rivella, S., Nemeth, E., & Ganz, T. (2014). Identification of erythroferrone as an erythroid regulator of iron metabolism. Nature Genetics, 46(7), 678–684. https://doi.org/10.1038/ng.2996
Locatelli, F., Thompson, A. A., Kwiatkowski, J. L., Porter, J. B., Thrasher, A. J., Lekstrom-Himes, J., ... & Cavazzana, M. (2022). Betibeglogene autotemcel gene therapy for non–β⁰/β⁰ transfusion-dependent β-thalassemia. Nature Medicine, 28(5), 1062–1069. https://doi.org/10.1038/s41591-022-01744-4
Lucarelli, G., Galimberti, M., Polchi, P., Angelucci, E., Baronciani, D., Giardini, C., ... & Durazzi, S. M. (1990). Bone marrow transplantation in thalassemia. New England Journal of Medicine, 322(7), 417–421. https://doi.org/10.1056/NEJM199002153220701
Orkin, S. H., & Bauer, D. E. (2019). Emerging genetic therapy for sickle cell disease. Annual Review of Medicine, 70, 257–271. https://doi.org/10.1146/annurev-med-041317-110429
Piga, A., Perrotta, S., Gamberini, M. R., Voskaridou, E., Melpignano, A., Filosa, A., ... & Cappellini, M. D. (2019). Luspatercept improves hemoglobin levels and blood transfusion requirements in a phase 2 study in patients with transfusion-dependent β-thalassemia. American Journal of Hematology, 94(4), 402–409. https://doi.org/10.1002/ajh.25409
Rivella, S. (2009). Ineffective erythropoiesis and thalassemias. Current Opinion in Hematology, 16(3), 187–194. https://doi.org/10.1097/MOH.0b013e32832a6ec4
Rund, D., & Rachmilewitz, E. (2005). β-thalassemia. New England Journal of Medicine, 353(11), 1135–1146. https://doi.org/10.1056/NEJMra050436
Skordis, N., Kyriakou, A., Toumba, M., & Savva, S. C. (2013). Endocrine complications in patients with thalassaemia major. Pediatric Endocrinology Reviews, 11(Suppl 2), 96–104.
Taher, A. T., Musallam, K. M., & Cappellini, M. D. (2021). β-thalassemias. New England Journal of Medicine, 384(8), 727–743. https://doi.org/10.1056/NEJMra2006198
Taher, A. T., Musallam, K. M., Cappellini, M. D., Viprakasit, V., & Kattamis, A. (2022). Luspatercept in non–transfusion-dependent β-thalassemia: Results from the BEYOND trial. American Journal of Hematology, 97(10), 1305–1314. https://doi.org/10.1002/ajh.26593
Taher, A. T., Weatherall, D. J., & Cappellini, M. D. (2011). Thalassaemia. The Lancet, 379(9813), 373–383. https://doi.org/10.1016/S0140-6736(10)60236-1
Thompson, A. A., Walters, M. C., Kwiatkowski, J., Rasko, J. E., Ribeil, J. A., Hongeng, S., ... & Leboulch, P. (2018). Gene therapy in patients with transfusion-dependent β-thalassemia. New England Journal of Medicine, 378(16), 1479–1493. https://doi.org/10.1056/NEJMoa1705342
Weatherall, D. J. (2010). The inherited diseases of hemoglobin are an emerging global health burden. Blood, 115(22), 4331–4336. https://doi.org/10.1182/blood-2010-01-251348
Wojtowicz, J. C., Rofe, C., & Wood, J. C. (2016). Biomarkers of inflammation and organ injury in thalassemia. Hematology/Oncology Clinics of North America, 30(2), 343–362. https://doi.org/10.1016/j.hoc.2015.11.007
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.