Recent Advances in the Pathophysiology and Therapeutic Management of Thalassemia: A Comprehensive Review

Authors

  • Zahra Hassan Ali Khuzae Najran armed force hospital, Saudi Arabia Author
  • Aysha Ahmad Aseery Najran armed force hospital, Saudi Arabia Author
  • Hessa Ali Asiri Najran Armed Forces hospital, Saudi Arabia Author
  • Naseem Hamood Faqihi Najran Armed Forces hospital, Saudi Arabia Author
  • Maha Ali Dawmari Najran Armed Forces hospital, Saudi Arabia Author
  • Nourah Bekheet Salem Alyami Najran Armed Forces hospital, Saudi Arabia Author

DOI:

https://doi.org/10.48047/tw5tza77

Keywords:

Thalassemia, β-thalassemia, ineffective erythropoiesis, iron overload, gene therapy, luspatercept, hepcidin, transfusion, chelation therapy

Abstract

Thalassemia represents a diverse group of inherited hemoglobinopathies characterized by reduced or absent synthesis of α- or β-globin chains, leading to chronic anemia, ineffective erythropoiesis, and iron overload. Over the past decade, significant progress has been made in understanding the complex molecular and cellular mechanisms underlying thalassemia, particularly in β-thalassemia major and intermedia. Advances in pathophysiology have elucidated the roles of hepcidin suppression, oxidative stress, dysregulated erythroid maturation, and inflammatory signaling in disease progression. These insights have driven the development of innovative therapeutic strategies that go beyond traditional transfusion and iron chelation therapy.

Emerging treatments include gene therapy approaches, such as lentiviral vector-based gene addition and CRISPR-Cas9-mediated genome editing, which offer curative potential. Additionally, novel agents like luspatercept, an erythroid maturation agent, and hepcidin agonists represent promising tools in managing ineffective erythropoiesis and iron dysregulation. While hematopoietic stem cell transplantation remains the only widely accepted curative option, limitations in donor availability and transplant-related risks have restricted its use. This review comprehensively synthesizes recent advances in the pathophysiology and therapeutic landscape of thalassemia, highlighting both established and emerging treatment modalities. It also discusses clinical trial data, implementation challenges, and future directions toward personalized and globally accessible care for individuals affected by thalassemia.

Downloads

Download data is not yet available.

References

Anderson, L. J., Holden, S., Davis, B., Prescott, E., Charrier, C. C., Bunce, N. H., ... & Walker, J. M. (2001). Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. European Heart Journal, 22(23), 2171–2179. https://doi.org/10.1053/euhj.2001.2822

Angelucci, E., Matthes-Martin, S., Baronciani, D., Bernaudin, F., Bonanomi, S., Cappellini, M. D., ... & Peters, C. (2014). Hematopoietic stem cell transplantation in thalassemia major: A position statement from the European Blood and Marrow Transplantation (EBMT). Bone Marrow Transplantation, 49(6), 825–831. https://doi.org/10.1038/bmt.2013.210

Cappellini, M. D., Cohen, A., Porter, J., & Taher, A. T. (2020). Guidelines for the management of transfusion dependent thalassaemia (TDT). Thalassaemia International Federation.

Cappellini, M. D., Porter, J. B., Viprakasit, V., Taher, A. T., Coates, T. D., Origa, R., ... & Roselli, E. A. (2020). Luspatercept in patients with transfusion-dependent β-thalassemia. New England Journal of Medicine, 382(13), 1219–1231. https://doi.org/10.1056/NEJMoa1908892

Casu, C., Pettinati, I., Oikonomidou, P. R., & Rivella, S. (2016). Minihepcidins and other hepcidin analogs as potential therapeutic tools. Blood, 127(17), 2089–2097. https://doi.org/10.1182/blood-2015-12-631663

Dussiot, M., Maciel, T. T., Fricot, A., Chartier, C., Negre, O., Veiga, J., ... & Ribeil, J. A. (2014). An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nature Medicine, 20(4), 398–407. https://doi.org/10.1038/nm.3468

Fibach, E., & Rachmilewitz, E. (2008). The role of oxidative stress in hemolytic anemia. Current Molecular Medicine, 8(7), 609–619. https://doi.org/10.2174/156652408786241384

Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y. S., Domm, J., Eustace, B. K., ... & Cornetta, K. (2021). CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. New England Journal of Medicine, 384(3), 252–260. https://doi.org/10.1056/NEJMoa2031054

Gaziev, J., Marziali, M., Isgrò, A., Sodani, P., Lucarelli, G., & Andreani, M. (2020). TCRαβ+/CD19+ cell-depleted haploidentical HSCT in hemoglobinopathies. Frontiers in Immunology, 11, 345. https://doi.org/10.3389/fimmu.2020.00345

Guo, S., Casu, C., Gardenghi, S., Xu, Y., Guo, J., Sun, C. C., ... & Rivella, S. (2021). Targeting TMPRSS6 to improve hepcidin expression and reduce iron overload in β-thalassemia. Blood Advances, 5(8), 2079–2090. https://doi.org/10.1182/bloodadvances.2020003011

Karimi, M., Haghpanah, S., & Azarkeivan, A. (2023). Real-world experience of luspatercept and unmet needs in β-thalassemia management in the Middle East. Mediterranean Journal of Hematology and Infectious Diseases, 15(1), e2023005. https://doi.org/10.4084/mjhid.2023.005

Kautz, L., Jung, G., Valore, E. V., Rivella, S., Nemeth, E., & Ganz, T. (2014). Identification of erythroferrone as an erythroid regulator of iron metabolism. Nature Genetics, 46(7), 678–684. https://doi.org/10.1038/ng.2996

Locatelli, F., Thompson, A. A., Kwiatkowski, J. L., Porter, J. B., Thrasher, A. J., Lekstrom-Himes, J., ... & Cavazzana, M. (2022). Betibeglogene autotemcel gene therapy for non–β⁰/β⁰ transfusion-dependent β-thalassemia. Nature Medicine, 28(5), 1062–1069. https://doi.org/10.1038/s41591-022-01744-4

Lucarelli, G., Galimberti, M., Polchi, P., Angelucci, E., Baronciani, D., Giardini, C., ... & Durazzi, S. M. (1990). Bone marrow transplantation in thalassemia. New England Journal of Medicine, 322(7), 417–421. https://doi.org/10.1056/NEJM199002153220701

Orkin, S. H., & Bauer, D. E. (2019). Emerging genetic therapy for sickle cell disease. Annual Review of Medicine, 70, 257–271. https://doi.org/10.1146/annurev-med-041317-110429

Piga, A., Perrotta, S., Gamberini, M. R., Voskaridou, E., Melpignano, A., Filosa, A., ... & Cappellini, M. D. (2019). Luspatercept improves hemoglobin levels and blood transfusion requirements in a phase 2 study in patients with transfusion-dependent β-thalassemia. American Journal of Hematology, 94(4), 402–409. https://doi.org/10.1002/ajh.25409

Rivella, S. (2009). Ineffective erythropoiesis and thalassemias. Current Opinion in Hematology, 16(3), 187–194. https://doi.org/10.1097/MOH.0b013e32832a6ec4

Rund, D., & Rachmilewitz, E. (2005). β-thalassemia. New England Journal of Medicine, 353(11), 1135–1146. https://doi.org/10.1056/NEJMra050436

Skordis, N., Kyriakou, A., Toumba, M., & Savva, S. C. (2013). Endocrine complications in patients with thalassaemia major. Pediatric Endocrinology Reviews, 11(Suppl 2), 96–104.

Taher, A. T., Musallam, K. M., & Cappellini, M. D. (2021). β-thalassemias. New England Journal of Medicine, 384(8), 727–743. https://doi.org/10.1056/NEJMra2006198

Taher, A. T., Musallam, K. M., Cappellini, M. D., Viprakasit, V., & Kattamis, A. (2022). Luspatercept in non–transfusion-dependent β-thalassemia: Results from the BEYOND trial. American Journal of Hematology, 97(10), 1305–1314. https://doi.org/10.1002/ajh.26593

Taher, A. T., Weatherall, D. J., & Cappellini, M. D. (2011). Thalassaemia. The Lancet, 379(9813), 373–383. https://doi.org/10.1016/S0140-6736(10)60236-1

Thompson, A. A., Walters, M. C., Kwiatkowski, J., Rasko, J. E., Ribeil, J. A., Hongeng, S., ... & Leboulch, P. (2018). Gene therapy in patients with transfusion-dependent β-thalassemia. New England Journal of Medicine, 378(16), 1479–1493. https://doi.org/10.1056/NEJMoa1705342

Weatherall, D. J. (2010). The inherited diseases of hemoglobin are an emerging global health burden. Blood, 115(22), 4331–4336. https://doi.org/10.1182/blood-2010-01-251348

Wojtowicz, J. C., Rofe, C., & Wood, J. C. (2016). Biomarkers of inflammation and organ injury in thalassemia. Hematology/Oncology Clinics of North America, 30(2), 343–362. https://doi.org/10.1016/j.hoc.2015.11.007

Downloads

Published

2025-08-12

How to Cite

Recent Advances in the Pathophysiology and Therapeutic Management of Thalassemia: A Comprehensive Review (Z. H. Ali Khuzae, A. Ahmad Aseery, H. Ali Asiri, N. Hamood Faqihi, M. Ali Dawmari, & N. B. Salem Alyami , Trans.). (2025). Cuestiones De Fisioterapia, 54(5), 1205-1217. https://doi.org/10.48047/tw5tza77