La evaluación de las secuelas neuromuscularesost daño cerebral mediante termografía. Un estudio piloto

Autores/as

  • A Cabizosu THERMHESC Group. Chair of Ribera Hospital de Molina San Antonio Catholic University of Murcia (UCAM). Murcia, Spain Autor/a
  • R Castañeda Vozmediano Faculty of Medicine, Universidad Francisco de Vitoria. Madrid, Spain Autor/a
  • M J López Esteban ASTRPACE. Association for the Treatment of People with Cerebral Palsy and Related Pathologies. Murcia, Spain Autor/a
  • D Grotto THERMHESC Group. Chair of Ribera Hospital de Molina San Antonio Catholic University of Murcia (UCAM). Murcia, Spain Autor/a

Palabras clave:

termografía, daño cerebral, ictus, neuromuscular.

Resumen

 Introducción: las secuelas relacionadas con el daño cerebral son la tercera causa de discapacidad en el mundo y la segunda de muerte. La subjetividad del evaluador en la valoración del tejido trófico es siempre un elemento a tener en cuenta. En este sentido, los objetivos de este estudio piloto fueron observar la fiabilidad y validez de la técnica termográfica en pacientes con secuelas motoras tras daño cerebral. Material y método: se reclutaron 28 pacientes con afectación neuromuscular. Un investigador ciego especializado en la evaluación del daño neu-romuscular midió la afectación según la Escala de Ashwort, determinando el grado de restricción y resistencia a la flexión del tobillo, mientras que 2 investigadores registraron los patrones térmicos. Resultados: en el primer momento de la medición, la temperatura de las dos piernas por separado no superó los 30,2 oC en el 75 % de los casos y en el segundo momento no superó los 29,7 oC. Las mediciones medias en la pierna izquierda y derecha ofrecen valores máximos inferiores a 31,9 oC para ambas. En conjunto, las mediciones fueron de una media de 28,4 oC con una desviación típica de 1,928. En el 75 % del total de las mediciones hubo una temperatura igual o inferior a 29,8 oC, por lo que la temperatura en estos pacientes patológicos parece generalmente inferior a 32 oC.
onclusión: la termografía podría ser una herramienta fiable y válida en la valoración de pacientes con daño neu-romuscular; sin embargo, son necesarios más estudios con un mayor tamaño muestral para clarificar el papel de esta técnica en relación con el daño neuromuscular.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: a global response is needed. Bull World Health Organ. 2016 Sep; 94(9): 634–634A.

Han P, Zhang W, Kang L, et al. Clinical Evidence of Exer- cise Benefits for Stroke. Adv Exp Med Biol. 2017; 1000: 131–51.

Lindsay MP, Norrving B, Sacco RL, Brainin M, Hacke W, Martins S, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2019. Int J Stroke. 2019; 14(8): 806–17.

GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 May; 18(5): 459–80.

Thibaut A, Chatelle C, Ziegler E, Bruno MA, Laureys S, Gosseries O. Spasticity after stroke: physiology, assess- ment and treatment. Brain Inj. 2013; 27(10): 1093–105.

García Fernández MA, Bermejo J, Moreno M. Utilidad de las técnicas de imagen en la valoración etiológica y toma de decisiones en el paciente con ictus. Rev Esp Cardiol. 2003; 56(11): 1119–32.

Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987 Feb

;67(2): 206–7.

Louie DR, Eng JJ. Berg Balance Scale score at admission can predict walking suitable for community ambulation at discharge from inpatient stroke rehabilitation. J Rehabil Med. 2018 Jan 10; 50(1): 37–44.

Ohura T, Hase K, Nakajima Y, Nakayama T. Validity and re- liability of a performance evaluation tool based on the mo- dified Barthel Index for stroke patients. BMC Med Res Methodol. 2017 Aug 25; 17(1): 131.

Dikmen S, Machamer J, Manley GT, Yuh EL, Nelson LD, Temkin NR, et al. Functional Status Examination versus Glasgow Outcome Scale Extended as Outcome Measures in Traumatic Brain Injuries: How Do They Compare? J Neu- rotrauma. 2019 Aug 15; 36(16): 2423–9.

Özçakar L, Ata AM, Kaymak B, Kara M, Kumbhare D. Ul- trasound imaging for sarcopenia, spasticity and painful muscle syndromes. Curr Opin Support Palliat Care. 2018 Sep;12(3): 373–81.

Ri S, Kivi A, Urban PP, Wolf T, Wissel J. Site and size of le- sion predict post-stroke spasticity: A retrospective magne- tic resonance imaging study. J Rehabil Med. 2020 May 31; 52(5): jrm00065.

Shaikh TA, Ali R. Automated atrophy assessment for Alz- heimer’s disease diagnosis from brain MRI images. Magn Reson Imaging. 2019 Oct; 62: 167–73.

Hegedűs B. The Potential Role of Thermography in Deter-

mining the Efficacy of Stroke Rehabilitation. J Stroke Ce- rebrovasc Dis. 2018 Feb; 27(2): 309–14.

Nowak I, Mraz M, Mraz M. Thermography assessment of spastic lower limb in patients after cerebral stroke undergoing rehabilitation. J Therm Anal Calorim. 2020; 140(2): 755–62.

Cabizosu A, Carboni N, Martinez-Almagro Andreo A, Ve- gara-Meseguer JM, Marziliano N, Gea Carrasco G, et al. Theoretical basis for a new approach of studying Emery- Dreifuss muscular dystrophy by means of thermography. Med Hypotheses. 2018; 118: 103–6.

Ring EFJ, Ammer K. Infrared thermal imaging in medicine. Physiol Meas. 2012 Mar; 33(3): R33–46.

Tattersall GJ. Infrared thermography: A non-invasive win- dow into thermal physiology. Comp Biochem Physiol A Mol Integr Physiol. 2016 Dec; 202: 78–98.

Magalhaes C, Vardasca R, Mendes J. Recent use of me- dical infrared thermography in skin neoplasms. Skin Res Technol. 2018 Nov; 24(4): 587–91.

Jimenez-Pavon D, Corral-Perez J, Sánchez-Infantes D, Vi- llarroya F, Ruiz JR, Martinez-Tellez B. Infrared Thermo- graphy for Estimating Supraclavicular Skin Temperature and BAT Activity in Humans: A Systematic Review. Obe- sity (Silver Spring). 2019 Dec; 27(12): 1932–49.

Hazenberg CEVB, Aan de Stegge WB, Van Baal SG, Moll FL, Bus SA. Telehealth and telemedicine applications for the diabetic foot: A systematic review. Diabetes Metab Res Rev. 2020 Mar; 36(3): e3247.

Andersson S. Thermography and plethysmography in the diagnosis of deep venous thrombosis--a comparison with phlebography. Acta Med Scand. 1986; 219(4): 359–66.

Moreira DG, Costello JT, Brito CJ, Adamczyk JG, Ammer K, Bach AJE, et al. Thermographic imaging in sports and exercise medicine: A Delphi study and consensus state- ment on the measurement of human skin temperature. J Therm Biol. 2017 Oct; 69: 155–62.

Harb A, Kishner S. Modified Ashworth Scale. In: Stat Pe- arls. Stat Pearls Publishing; 2023. Accessed October 3, 2023. http://www.ncbi.nlm.nih.gov/books/NBK554572/

Hernández Muñiz S, Mitjavila Casanovas M. [Introduction to computed tomography]. Rev Esp Med Nucl. 2006; 25(3): 206–14.

Andisco D, Blanco S, Buzzi A, Ballester S. Optimización Interdisciplinaria de Protocolos en Tomografía Computada a partir de la modificación del mA y del control del ruido en la imagen. Rev argent radiol. 2010: 397–402.

Steketee J. Spectral emissivity of skin and pericardium. Phys Med Biol. 1973 Sep; 18(5): 686–94.

Cabizosu A, Carboni N, Martínez-Almagro Andreo A, Casu G, Ramón Sánchez C, Vegara-Meseguer JM. Relations- hip between infrared skin radiation and muscular strength tests in patients affected by Emery-Dreifuss muscular dystrophy. Med Hypotheses. 2020 May; 138: 109592.

Bouzas Marins JC, de Andrade Fernandes A, Gomes Mo- reira D, Souza Silva C, Magno Costa A, Pimenta EM, et al. Thermographic profile of soccer players’ lower limbs. Rev Andal Med Deporte. 2014 Mar; 7(1): 1–6.

FLIR Systems | Sistemas de cámaras termográficas, de vi- sión nocturna e infrarrojas | Teledyne FLIR. Accessed Oc- tober 23, 2023. https://www.flir.es/

Charlton M, Stanley SA, Whitman Z, Wenn V, Coats TJ, Sims M, et al. The effect of constitutive pigmentation on the measured emissivity of human skin. PLoS One. 2020 Nov 25; 15(11): e0241843.

Bernard V, Staffa E, Mornstein V, Bourek A. Infrared ca- mera assessment of skin surface temperature--effect of emissivity. Phys Med. 2013 Nov; 29(6): 583–91.

Côrte AC, Pedrinelli A, Marttos A, Souza IFG, Grava J, José Hernandez A. Infrared thermography study as a comple- mentary method of screening and prevention of muscle in- juries: pilot study. BMJ Open Sport Exerc Med. 2019 Jan 3; 5(1): e000431.

Carrière ME, de Haas LEM, Pijpe A, Meij-de Vries A, Gar- dien KLM, van Zuijlen PPM, et al. Validity of thermography for measuring burn wound healing potential. Wound Re- pair Regen. 2020 May; 28(3): 347–54.

Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2. ed. New York: Psychology Press; 2009.

Sousa NTAD, Guirro ECDO, Calió JG, Queluz MCD, Gui- rro RRDJ. Application of shortwave diathermy to lower limb increases arterial blood flow velocity and skin temperature in women: a randomized controlled trial. Braz J Phys Ther. 2017 Mar-Apr; 21(2): 127–137.

Kolosovas-Machuca ES, González FJ. Distribution of skin temperature in Mexican children. Skin Res Technol. 2011 Aug; 17(3): 326–31.

Wilkinson JD, Leggett SA, Marjanovic EJ, Moore TL, Allen J, Anderson ME, et al. A Multicenter Study of the Validity and Reliability of Responses to Hand Cold Challenge as Measured by Laser Speckle Contrast Imaging and Ther- mography: Outcome Measures for Systemic Sclerosis-Re-ated Raynaud’s Phenomenon. Arthritis Rheumatol. 2018 Jun; 70(6): 903–11.

Woźniak K, Szyszka-Sommerfeld L, Trybek G, Piątkowska

D. Assessment of the Sensitivity, Specificity, and Accuracy of Thermography in Identifying Patients with TMD. Med Sci Monit. 2015 May 23; 21: 1485–93.

Gratt BM, Sickles EA, Ross JB, Wexler CE, Gornbein JA. Thermographic assessment of craniomandibular disorders: diagnostic interpretation versus temperature measurement analysis. J Orofac Pain. 1994; 8(3): 278–88.

Gatt A, Formosa C, Cassar K, Camilleri KP, De Raffaele C, Mizzi A, et al. Thermographic patterns of the upper and lower limbs: baseline data. Int J Vasc Med. 2015; 2015: 831369.

Marins JC, Fernandes AA, Cano SP, Moreira DG, da Silva FS, Costa CM, et al. Thermal body patterns for healthy Bra- zilian adults (male and female). J Therm Biol. 2014 May; 42: 1–8.

Jensen AK, Low CE, Pal P, Raczynski TN. Relation of Mus- culoskeletal Strength and Function to Postural Stability in Ambulatory Adults With Cerebral Palsy. Arch Rehabil Res Clin Transl. 2020 Jul 15; 2(4): 100074.

Scherbakov N, von Haehling S, Anker SD, Dirnagl U, Do- ehner W. Stroke induced Sarcopenia: muscle wasting and disability after stroke. Int J Cardiol. 2013 Dec 10; 170(2): 89–94.

Jeon YK, Shin MJ, Saini SK, Custodero C, Aggarwal M, Anton SD, et al. Vascular dysfunction as a potential culprit of sarcopenia. Exp Gerontol. 2021 Mar; 145: 111220.

Amarasekera AT, Chang D, Schwarz P, Tan TC. Does vas- cular endothelial dysfunction play a role in physical frailty and sarcopenia? A systematic review. Age Ageing. 2021 May 5; 50(3): 725–32.

Miller T, Ying M, Sau Lan Tsang C, Huang M, Pang MYC. Reliability and Validity of Ultrasound Elastography for Eva- luating Muscle Stiffness in Neurological Populations: A Systematic Review and Meta-Analysis. Phys Ther. 2021 Jan 4; 101(1): pzaa188.

Dietz V, Sinkjaer T. Spasticity. Handb Clin Neurol. 2012; 109: 197–211.

Sbiti A, Ratbi I, Kriouile Y, Sefiani A. L’amyotrophie spinale infantile : cause fréquente des hypotonies congénitales au Maroc. Archives de Pédiatrie. 2011; 18(12): 1261–64.

Evans SH, Cameron MW, Burton JM. Hypertonia. Curr Probl Pediatr Adolesc Health Care. 2017 Jul; 47(7): 161–6.

Huang HP, Kuo CC, Lu TW, Wu KW, Kuo KN, Wang TM. Bi- lateral symmetry in leg and joint stiffness in children with spastic hemiplegic cerebral palsy during gait. J Orthop Res. 2020 Sep; 38(9): 2006–14.

Cabizosu A, Carboni N, Figus A, et al. Is infrared thermo- graphy (IRT) a possible tool for the evaluation and follow up of Emery-Dreifuss muscular dystrophy? A preliminary study. Med Hypotheses. 2019 Jun; 127: 91–6.

Cabizosu A, Carboni N, Figus A, Vegara-Meseguer JM, Casu G, Hernández Jiménez P, et al. Relationship between infrared skin radiation and functional tests in patients af- fected by Emery-Dreifuss muscular dystrophy: Part 2. Med Hypotheses. 2021; 146: 110348.

Dębiec-Bąk A, Gruszka K, Sobiech K, Skrzek A. Age de- pendence of thermal imaging analysis of body surface tem- perature in women after cryostimulation. Human Movement. 2013 Dec; 14(4): 299–304.

Gomes-Moreira D, Bhering-Molinari A, Andrade-Fernan- des A, Sillero-Quintana M, Brito CJ, Aparecida-Doimo L, et al. Skin temperature of physically active elderly and young women measured using infrared thermography. JPES. 2017; 17(4): 2531–7.

Uematsu S, Edwin DH, Jankel WR, Kozikowski J, Trattner

M. Quantification of thermal asymmetry. Part 1: Normal va- lues and reproducibility. J Neurosurg. 1988 Oct; 69(4): 552–5.

Ouyang JQ, Macaballug P, Chen H, Hodach K, Tang S, Francis JS. Infrared thermography is an effective, nonin- vasive measure of HPA activation. Stress. 2021 Sep; 24(5): 584–9.

Schiavon G, Capone G, Frize M, Zaffagnini S, Candrian C, Filardo G. Infrared Thermography for the Evaluation of Inflammatory and Degenerative Joint Diseases: A Systematic Review. Cartilage. 2021 Dec; 13(2_suppl): 1790S –801S.

Rodriguez-Sanz D, Losa-Iglesias ME, Becerro-de-Bengoa- Vallejo R, Dorgham HAA, Benito-de-Pedro M, San-Antolín M, et al. Thermography related to electromyography in run- ners with functional equinus condition after running. Phys Ther Sport. 2019 Nov; 40: 193–6.

Moreira-Marconi E, Moura-Fernandes MC, Lopes-Souza P, Teixeira-Silva Y, Reis-Silva A, Marchon RM, et al. Eva- luation of the temperature of posterior lower limbs skin du- ring the whole body vibration measured by infrared thermography: Cross-sectional study analysis using linear

mixed effect model. PLoS One. 2019 Mar 13; 14(3): e0212512.

Harding C, Pompei F, Bordonaro SF, McGillicuddy DC, Bur- mistrov D, Sanchez LD. The daily, weekly, and seasonal cycles of body temperature analyzed at large scale. Chro- nobiol Int. 2019 Dec; 36(12): 1646-57.

Meseguer-Henarejos AB, Sánchez-Meca J, López-Pina JA, Carles-Hernández R. Inter- and intra-rater reliability of the Modified Ashworth Scale: a systematic review and meta- analysis. Eur J Phys Rehabil Med. 2018 Aug; 54(4): 576– 90.

Kaya T, Karatepe AG, Gunaydin R, Koc A, Altundal Ercan

U. Inter-rater reliability of the Modified Ashworth Scale and modified Modified Ashworth Scale in assessing poststroke elbow flexor spasticity. Int J Rehabil Res. 2011 Mar; 34(1): 59–64.

Ansari NN, Naghdi S, Moammeri H, Jalaie S. Ashworth Scales are unreliable for the assessment of muscle spas- ticity. Physiother Theory Pract. 2006 Jun; 22(3): 119–25.

Fleuren JF, Voerman GE, Erren-Wolters CV, Snoek GJ, Rietman JS, Hermens HJ, et al. Stop using the Ashworth Scale for the assessment of spasticity. J Neurol Neurosurg Psychiatry. 2010 Jan; 81(1): 46–52.

Moreira A, Batista R, Oliveira S, Branco CA, Mendes J, Fi- gueiral MH. Role of thermography in the assessment of temporomandibular disorders and other musculoskeletal conditions: A systematic review. Proc Inst Mech Eng H. 2021 Oct; 235(10): 1099–112.

Albuquerque NF, Lopes BS. Musculoskeletal applications of infrared thermography on back and neck syndromes: a systematic review. Eur J Phys Rehabil Med. 2021 Jun; 57(3): 386–96.

Descargas

Publicado

2024-07-23

Cómo citar

Cabizosu , A., Castañeda Vozmediano , R., López Esteban, M. J., & Grotto , D. (2024). La evaluación de las secuelas neuromuscularesost daño cerebral mediante termografía. Un estudio piloto. Cuestiones De Fisioterapia, 53(02), 08-21. https://cuestionesdefisioterapia.com/index.php/cf/article/view/5