IMPROVED ORAL CANCER CLASSIFICATION USING HYBRIDIZATION OF DEEP FEATURE AND CORRELATION-BASED FEATURE WEIGHT

Authors

  • Nidhi Agrawal M. Tech. Scholar Dept. of CSES SIPMT, Raipur Author
  • Dr. Yogesh Kumar Rathore Assistant Professor Dept. of CSES SIPMT, Raipur Author

DOI:

https://doi.org/10.48047/hqkefd72

Keywords:

Deep Learning, Feature Classification, Binary Cancer Detection, Medical Images, ResNet18, EfficientNet-B0, Feature Relevance, Medical Image Analysis

Abstract

 This study presents a hybrid deep learning-based feature classification framework for binary cancer detection using medical images. The proposed method extracts heterogeneous deep features from ResNet18 and EfficientNet-B0, which are then concatenated to form a unified feature vector. To quantify feature relevance, the Pearson correlation between each feature dimension and the ground-truth labels is computed. These correlation scores are then used to weight each feature dimension, producing a correlation-enhanced representation. The weighted feature matrix is then used to train multiple classifiers, including Random Forest, SVM, XGBoost, Extra Trees, and Logistic Regression.

Downloads

Download data is not yet available.

References

Praveen, P., Yashas, S. R., Bhattacharyya, S., Suchitra, H. L., & Yashawanth, L. S. (2024). Automated Oral Cancer Detection Using Hybrid CNNs for Enhanced Clinical Applications. Indian Scientific Journal Of Research In Engineering And Management, 08(12), 1–9. https://doi.org/10.55041/ijsrem40376

Wei, X., Liu, C., Jiang, K., Linyun, Y., Jinxing, G., & Quanbing, W. (2024). Convolutional neural network for oral cancer detection combined with improved tunicate swarm algorithm to detect oral cancer. Dental Science Reports, 14(1). https://doi.org/10.1038/s41598-024-79250-0

Bhaskar, A., Soujanya, A., Ramal, P. J., Santhanalakshmi, S. T., Nithyakalyani, K., & Kumar, B. R. (2024). Enhancing Oral Cancer Screening with Deep Learning Algorithms. 1–6. https://doi.org/10.1109/iccsc62048.2024.10830423

Dwivedi, K., Patel, K., Pandey, J. P., & Garg, P. (2024). An Automatic Robust Deep Learning and Feature Fusion-based Classification Method for Early Diagnosis of Oral Cancer Using Lip and Tongue Images. 391–395. https://doi.org/10.1109/icdt61202.2024.10489266

Sharma, G., & Chadha, R. (2023). The Detection of Skin Cancer and Oral Cancer : A comparison of the proposed Hybrid Model with the Existing Detection Algorithms. IEEE International Conference on Electrical, Computer and Communication Technologies, 1–6. https://doi.org/10.1109/ICECCT56650.2023.10179808

Ananthakrishnan, B., Shaik, A. F., Kumar, S., Narendran, S. O., Mattu, K., & Kavitha, M. S. (2023). Automated Detection and Classification of Oral Squamous Cell Carcinoma Using Deep Neural Networks. Diagnostics, 13(5), 918. https://doi.org/10.3390/diagnostics13050918

Automated Oral Cancer Detection using Convolutional Neural Networks and Support Vector Machines. (n.d.). https://doi.org/10.59287/as-ijanser.582

Mira, E. S., Saaduddin, A. M., Aljehanı, R. F. ı, Jambı, B. S. ı, Bashir, T., El-kenawy, E. M. E., & Saber, M. (n.d.). Early Diagnosis of Oral Cancer Using Image Processing and Artificial Intelligence. https://doi.org/10.54216/fpa.140122

Song, B., Sunny, S. P., Uthoff, R. D., Patrick, S., Suresh, A., Kolur, T., Keerthi, G., Anbarani, A., Wilder-Smith, P., Kuriakose, M. A., Birur, P., Rodriguez, J. J., & Liang, R. (2018). Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning. Biomedical Optics Express, 9(11), 5318–5329. https://doi.org/10.1364/BOE.9.005318

Devindi, G. A. I., Dissanayake, D. M. D. R., Liyanage, S., Francis, F., Pavithya, M. B. D., Piyarathne, N. S., Hettiarachchi, P. V. K. S., Rasnayaka, R. M. S. G. K., Jayasinghe, R. D., Ragel, R., & Nawinne, I. (2024). Multimodal Deep Convolutional Neural Network Pipeline for AI-Assisted Early Detection of Oral Cancer. IEEE Access, 12, 124375–124390. https://doi.org/10.1109/access.2024.3454338

Ragab, M., & Asar, T. (2024). Deep transfer learning with improved crayfish optimization algorithm for oral squamous cell carcinoma cancer recognition using histopathological images. Dental Science Reports, 14(1). https://doi.org/10.1038/s41598-024-75330-3

Fati, S. M., Senan, E. M., & Javed, Y. (2022). Early Diagnosis of Oral Squamous Cell Carcinoma Based on Histopathological Images Using Deep and Hybrid Learning Approaches. Diagnostics, 12(8), 1899. https://doi.org/10.3390/diagnostics12081899

Ahmad, M., Irfan, M. A., Sadique, U., Haq, I. ul, Jan, A., Khattak, M. I., Ghadi, Y. Y., & Aljuaid, H. (2023). Multi-Method Analysis of Histopathological Image for Early Diagnosis of Oral Squamous Cell Carcinoma Using Deep Learning and Hybrid Techniques. Cancers, 15. https://doi.org/10.3390/cancers15215247

Zafar, A., Khalid, M., Farrash, M., Qadah, T. M., Lahza, H. F. M., & Kim, S. (2024). Enhancing Oral Squamous Cell Carcinoma Detection Using Histopathological Images: A Deep Feature Fusion and Improved Haris Hawks Optimization-Based Framework. Bioengineering, 11(9), 913. https://doi.org/10.3390/bioengineering11090913

Gupta, R., Manhas, J., & Kour, M. (n.d.). Hybrid Feature Extraction Based Ensemble Classification Model to Diagnose Oral Carcinoma Using Histopathological Images. Journal of Scientific Research of the Banaras Hindu University. https://doi.org/10.37398/jsr.2022.660327

Meer, M., Khan, M. A., Jabeen, K., Alzahrani, A. I., Alalwan, N., Shabaz, Md., & Khan, F. (2024). Deep convolutional neural networks information fusion and improved whale optimization algorithm based smart oral squamous cell carcinoma classification framework using histopathological images. Expert Systems. https://doi.org/10.1111/exsy.13536

Shetty, S. K., & Patil, A. P. (2024). Hybrid model-based approach for oral cancer detection in distributed cloud environment. Australian Journal of Electrical and Electronics Engineering, 1–17. https://doi.org/10.1080/1448837x.2024.2354995

Bharanidharan, N., Abhinav, K., Lathvik, C. K., Chethan, M., Reddy, M., & Deepak, K. (2024). Feature Extraction using Hybridized Transfer Learning Approach for Oral Cancer Diagnosis. 975–979. https://doi.org/10.1109/icosec61587.2024.10722201

Soni, A., Sethy, P. K., Dewangan, A. K., Nanthaamornphong, A., Behera, S. K., & Devi, B. (2024). Enhancing oral squamous cell carcinoma detection: a novel approach using improved EfficientNet architecture. BMC Oral Health, 24. https://doi.org/10.1186/s12903-024-04307-5

Anitha, D., Soujanya, T., Chakraborty, S., Alkhayyat, A., & Revathi, R. (2024). Oral Cancer Detection and Classification Using Deep Learning with DenseNet121-CatBoost Classifier. 1–5. https://doi.org/10.1109/nmitcon62075.2024.10698836

Downloads

Published

2024-12-22

How to Cite

IMPROVED ORAL CANCER CLASSIFICATION USING HYBRIDIZATION OF DEEP FEATURE AND CORRELATION-BASED FEATURE WEIGHT (N. Agrawal & Y. Kumar Rathore , Trans.). (2024). Cuestiones De Fisioterapia, 53(03), 5293-5302. https://doi.org/10.48047/hqkefd72