RANKING TRAPEZOIDAL INTUITIONISTIC FUZZY NUMBERS USING ORTHOCENTER OF CENTROIDS: A NEW APPROACH

Authors

  • Vinod Kumar Vaddadi Department of BSH (Mathematics), SOS, Gandhi Institute of Engineering and Technology University, Odisha, Gunupur-765022 Author
  • Boina Anil Kumar Department of BSH (Mathematics), SOS, Gandhi Institute of Engineering and Technology University, Odisha, Gunupur-765022 Author
  • G Jogarao Department of Mathematics (BS&H), Aditya Institute of Technology and Management, Tekkali, India- 532201 Author

DOI:

https://doi.org/10.48047/z06qce53

Keywords:

Trapezoidal Intuitionistic Fuzzy Numbers, Orthocenter of Centroids, Ranking Method, Fuzzy Decision-Making, Uncertainty.

Abstract

In this paper, a ranking method for Trapezoidal Intuitionistic Fuzzy Numbers (TrIFNs) based on the orthocenter of centroids is proposed. The proposed approach effectively handles the uncertainty and vagueness associated with TrIFNs, enabling more accurate and reliable decision-making. The orthocenter of centroids is used to calculate a crisp ranking value, facilitating the comparison of TrIFNs. The method's validity and efficiency are demonstrated through numerical examples and comparative analyses with existing ranking methods. Results show that the proposed approach outperforms existing methods in terms of accuracy. This work contributes to the development of intuitionistic fuzzy decision-making theories and applications, particularly in fields such as multi-criteria decision-making, risk assessment, and optimization. 2020 Mathematics Subject Classification: 03E72, 03B52.

Downloads

Download data is not yet available.

References

Abbasbandy, S.,&Hajjari, T., A new approach for ranking of trapezoidal fuzzy numbers. Computers & mathematics with applications, 57(3), 413-419(2009).https://doi.org/10.1016/j.camwa.2008.10.090

Arun prakash, K., Suresh, M., &Vengataasalam, S., A New Approach for Ranking of Intuitionistic fuzzy number using a Centroid concept. 10, 177–184(2016).DOI: 10.1007/s40096-016-0192-y

Atanassov, K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87-97(1986).https://doi.org/10.1016/S0165-011413(86)80034-3.

Bharathi, S. K., Ranking Method of Intuitionistic Fuzzy Numbers. Global Journal of Pure and Applied Mathematics, 13(9), 4595-4608(2017). DOI:10.37622/000000

De, P. K., &Debaroti Das, Ranking of trapezoidal intuitionistic fuzzy numbers. IEEE (2013) DOI: 10.1109/ISDA.2012.6416534

Grzegorzewski, P.,Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy sets and systems, 148(2), 319-328(2004).https://doi.org/10.1016/j.fss.2003.08.005.

Kumar, A., Kaur, M.,A ranking approach for intuitionistic fuzzy numbers and its application. Journal of applied research and technology, 11(3), 381-396(2013).https://doi.org/10.1016/S1665-6423(13)71548-7

Laksmana Gomati, Nayagam Velu., Jeevaraj Selvaraj, & Dhanasekaran Ponnialagam, A New Ranking Principle for Ordering Trapezoidal Intuitionistic fuzzy number.Hindawi Complexity, 1-24(2017) ID: 3049041, https://doi.org/10.1155/2017/3049041

Mitchell, H. B. ,Ranking-intuitionistic fuzzy numbers. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(03), 377-386(2004).https://doi.org/10.1142/S0218488504002886.

Nayagam, V.L.G., Venkateswari, G., &Sivaraman, G., Ranking of intuitionistic fuzzy numbers.Proc. of international conference on fuzzy systems, Fuzz-IEEE 1971-1974, (2008). DOI: 10.1109/FUZZY.2008.4630639

Nehi, H.M., A new ranking method for intuitionistic fuzzy numbers. International journal of fuzzy systems, 12(1)80-86(2010) (2010).

Pardhasaradhi, B., Madhuri, M. V., & Ravi Shankar, N., Ordering Of Intuitionistic Fuzzy Numbers Using Centroid Of Centroids Of Intuitionistic Fuzzy Number. International Journal of Mathematics Trends and Technology 52(5), 276-285(2017). | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P542

Popa, L.,A new ranking method for trapezoidal intuitionistic fuzzy numbers and its application to multi-criteria decision making, MDP2(18), 1841-9844 (2023).https://doi.org/10.3390/math9212647

Rezvani,S., Ranking method of trapezoidal intuitionistic fuzzy numbers. Annals of fuzzy mathematics and informatics, 5(3), 515-523 (2003).

Seikh, M.R., Nayak, P.K., & Paul, M.,Generalized triangular fuzzy number in intuitionistic fuzzy environment. International journal of engineering research and development, 5(1), 08-13(2012).

Suresh Mohan, Arum Parkas Monogamy, &VengataasalamSamiappan., A New Approach for Ranking of Intuitionistic Fuzzy Numbers, Journal of Fuzzy.Ext. Appl. 1(1)15-26(2020). https://doi.org/10.22105/JFEA.2020.247301.1003

Viswanadham., & S., PardhaSaradhi., B., A Method of Ranking the Intuitionistic fuzzy numbers with distance method based on circum center of centroids., 7-8, (2023).,

Wang, J.,& Zhang, Z., Aggregation operators on intuitionistic trapezoidal fuzzy numbers and its application to multi-criteria decision making problems, Journals of System Engineering and Electronics, 20(2), 321-326, (2009).

Xing, Z., Xiong, W.,& Liu, H., A Euclidian Approach for Ranking Intuitionistic Fuzzy Values, IEEE Transactions on Fuzzy Systems, 26(1), 353-365, (2018)., https://doi.org/10.1109/TFUZZ.2017.2666219 .

Zadeh, A., Fuzzy sets, Inf. Control 8,338-353(1965)., https://doi.org/10.1016/S0019-9958(65)90241-X

Downloads

Published

2024-08-12

How to Cite

RANKING TRAPEZOIDAL INTUITIONISTIC FUZZY NUMBERS USING ORTHOCENTER OF CENTROIDS: A NEW APPROACH (V. Kumar Vaddadi, B. Anil Kumar, & G. Jogarao , Trans.). (2024). Cuestiones De Fisioterapia, 53(03), 5018-5026. https://doi.org/10.48047/z06qce53