

IoT-Enabled Weather Analysis and Monitoring System with Intelligent Climate Sense System

Vibhor Harit¹, Gaurav Gulati², Raj Sinha^{3*}, Ashok Kumar^{4*}, Penubaka Balaji⁵, Rahul Kumar⁶

^{1,2}Assistant Professor, Department of Computer science and Engineering, IMS Engineering College, Ghaziabad, India

³Assistant Professor, School of Computer Applications, Lovely Professional University, Punjab, India

^{4,6}Associate Professor, Department of Computer Science & Engineering, Amity School of Engineering and Technology, Amity University Madhya Pradesh, Gwalior, India

⁵Assistant Professor, Department of CSE, K L University, Guntur, Andhra Pradesh, India

Email: ¹vibhordev@gmail.com, ²er.gulatigaurav@gmail.com, ^{3*}rajsinha2310@gmail.com, ^{4*}ashok_gangwar@rediffmail.com,

⁵penubakabalaji.cse@gmail.com, ⁶rahulkumar1680@gmail.com

*Corresponding Author

ABSTRACT

The "Climate Sense: IoT Enabled Weather Monitoring and Analysis System" is advanced research integrating IoT technology to monitor weather conditions in real-time. Utilizing sensors such as DHT11 for humidity and temperature, rain sensors for precipitation, UV sensors for ultraviolet radiation, and LDR sensors for light intensity, the system collects comprehensive environmental data. These sensors, connected to a NodeMCU ESP32 microcontroller and custom PCB board, facilitate data collection and internet connectivity. The system leverages the Blynk platform for data visualization, allowing users to remotely access and analyzes weather information. This paper details the system's design, implementation, and performance, highlighting its potential applications in precision agriculture, transportation safety, urban planning, and climate research. The current research addresses the need for real-time weather data to enhance resilience against climate change impacts and supports informed decision-making through accessible and accurate environmental insights.

Keyword: Climate, Temperature, Humidity, UV Radiation, Rain Sensor.

I. Introduction

The rapid advancements in the Internet of Things (IoT) have revolutionized various sectors, including environmental monitoring and weather analysis. The development of an IoT-enabled Weather Analysis and Monitoring System integrated with an Intelligent Climate Sense System signifies a transformative approach to understanding and responding to climatic changes. Traditional weather monitoring systems often rely on static infrastructure and periodic data collection, limiting their accuracy and timeliness. In contrast, IoT-based systems leverage a network of interconnected sensors and devices that provide real-time data, enabling more accurate predictions and proactive decision-making. This system combines advanced technologies such as wireless sensor networks, cloud computing, big data analytics, and artificial intelligence (AI) to deliver a holistic and intelligent solution for climate monitoring.

At the heart of this system lies an array of IoT-enabled sensors deployed in various locations to measure critical environmental parameters such as temperature, humidity, air pressure, wind speed, and precipitation. These sensors continuously transmit data to a centralized platform via wireless communication protocols like Zigbee, LoRa, and Wi-Fi. The integration of edge computing enhances the system's efficiency by processing data locally, reducing latency, and ensuring seamless operation even in remote areas. Once collected, the data is aggregated and analyzed using AI-powered algorithms to identify

patterns, detect anomalies, and predict weather trends with greater precision. This analysis is further enriched by machine learning models that refine predictions over time based on historical data and real-time inputs. The Intelligent Climate Sense System adds a layer of sophistication by offering predictive insights and automated responses tailored to specific applications. For instance, in agricultural settings, the system can provide farmers with early warnings about frost or drought conditions, enabling them to take timely action to protect crops. In urban environments, it can support smart city initiatives by optimizing resource allocation for stormwater management or air quality control. The system's adaptability extends to disaster management, where real-time data can guide emergency response teams in mitigating the impact of natural calamities such as floods or hurricanes.

A cloud-based interface serves as the backbone of the monitoring system, providing users with access to visualized data and actionable insights via dashboards and mobile applications. This accessibility ensures that stakeholders ranging from policymakers to individual users can make informed decisions based on reliable information. The system also incorporates energy-efficient practices by utilizing renewable energy sources, such as solar-powered sensors, to minimize its ecological footprint. The IoT-enabled Weather Analysis and Monitoring System represents a significant leap toward achieving sustainability goals. By fostering a data-driven approach to climate resilience, it empowers communities to adapt to changing environmental conditions while mitigating risks. This innovative solution not only enhances the accuracy and scope of weather monitoring but also promotes proactive engagement with climate challenges, paving the way for smarter, greener, and more resilient ecosystems. Weather monitoring systems have evolved significantly with the advent of IoT technology. Traditional systems often lack real-time data accessibility and comprehensive environmental monitoring. Key terms include IoT, which refers to interconnected devices capable of collecting and exchanging data, and sensors like DHT11, which measure temperature and humidity, and LDR sensors, which measure light intensity.

The current research aims to design and implement an IoT-enabled weather monitoring system that integrates various sensors to provide real-time, comprehensive environmental data accessible via the Blynk platform. The research focuses on integrating specific sensors (DHT11, rain sensor, UV sensor, LDR sensor) with a NodeMCU ESP32 microcontroller and a custom PCB board. Constraints include potential connectivity issues and sensor calibration challenges.

II. Literature Survey

Recent advancements in IoT and wireless technologies have revolutionized weather monitoring systems, enhancing accessibility and functionality across diverse applications. Reference [1] presents an IoT-based weather monitoring solution that comprehensively tracks parameters such as temperature, humidity, wind speed, and environmental pollutants using multiple sensors. Data is transmitted to a web interface for real-time visualization and archived for future reference. A mobile app alerts users to sudden weather changes, while an integrated API enables complex forecasting beyond sensor capabilities.

Reference [2] introduces a cost-effective weather monitoring system leveraging ZigBee communication technology. Operating on an Arduino Uno board with sensors for rain, wind, air pressure, dust density, temperature, and humidity, this system stores data locally and transmits it via ZigBee Network to a centralized receiver. It addresses communication limitations like delays and bandwidth issues, making it

suitable for varied environments without constant internet connectivity. The urgency of localized weather warnings due to climate change is highlighted in Reference [3], which introduces a smart weather station integrating IoT and ML. This system predicts weather conditions using neural network models such as NARXNET, achieving high forecasting accuracy. Real-time and predictive data are accessible via mobile apps, with alerts disseminated through social media for widespread community engagement.

Reference [4] focuses on an 'Online Smart Weather Station System' that analyzes correlations among weather parameters over an extended period. Integrating sensors, local storage, and wireless data transfer, the system provides web-based interfaces for comprehensive data representation and statistical analysis. It explores applications in agriculture, construction, and manufacturing, proposing automated weather data analysis for enhanced operational efficiency.

Research by Shukla et al. (2022) highlights the transformative potential of IoT in real-time weather monitoring. The study emphasizes the role of IoT sensors in collecting and transmitting weather data over wireless networks. By leveraging cloud platforms, these systems provide robust data storage and predictive analytics capabilities. The integration of IoT with AI-based algorithms has enhanced the accuracy of weather forecasting, particularly for localized predictions. The research underscores the need for cost-effective and energy-efficient designs for widespread adoption. Kumar and Singh (2021) explored intelligent climate sensing systems that incorporate machine learning for adaptive decision-making. Their findings reveal that these systems can predict weather anomalies, such as heatwaves and heavy rainfall, by analyzing historical data patterns. The use of edge computing for on-site data processing significantly reduces response time and ensures uninterrupted operations in areas with limited connectivity. The paper also discusses challenges related to sensor calibration and data standardization across heterogeneous networks.

A study by Jagtap et al. (2020) demonstrates the application of IoT-enabled weather monitoring in precision agriculture. The research focuses on how real-time weather data can improve irrigation scheduling, pest control, and crop yield forecasting. IoT systems equipped with climate sensing technology provide farmers with actionable insights, reducing resource wastage and increasing productivity. The study highlights the potential of integrating these systems with blockchain for secure and transparent data sharing among stakeholders. Singh and Pal (2019) examined the role of IoT-enabled weather monitoring systems in disaster management. The research found that IoT networks significantly enhance early warning systems for natural disasters such as floods and hurricanes. These systems, combined with GIS (Geographic Information Systems), offer real-time updates to emergency services, improving response times and reducing casualties. The authors emphasize the importance of scalable IoT architectures to handle large volumes of data during crisis situations. Patel et al. (2023) investigated the environmental impact of IoT-based climate monitoring systems. The study identifies the energy efficiency of solar-powered IoT sensors and their role in minimizing the ecological footprint of weather monitoring operations. It also highlights the use of big data analytics for long-term climate modeling and policy formulation. The research concludes that these systems not only aid in real-time monitoring but also contribute to global sustainability goals by promoting proactive environmental management.

III. Proposed Model

The Climate Sense research utilized a variety of components to achieve real-time weather monitoring. Key components included the NodeMCU ESP32 microcontroller and a custom PCB board, which provided the necessary infrastructure for connecting various sensors and ensuring reliable data transmission (Figure 1). The research employed several sensors: the DHT11 sensor for measuring temperature and humidity, the rain drop sensor for detecting precipitation, the UV sensor for measuring ultraviolet radiation, and the LDR sensor for monitoring light intensity. Data from these sensors was transmitted to the Blynk app, which offered a user-friendly interface for real-time data visualization and alerts. Stranded wires were used to connect and secure the sensors to the custom PCB board, ensuring stable and consistent data collection throughout the research duration.

Fig. 1. IoT Components

In the development of an IoT-enabled weather monitoring system, the integration of various sensors is essential to gather accurate environmental data efficiently. Components such as the DHT11 for temperature and humidity, UV sensors for measuring UV radiation, rain sensors for detecting precipitation, and LDR sensors for assessing light intensity are interconnected on a general-purpose PCB board. This setup ensures comprehensive monitoring across multiple environmental parameters. The NodeMCU ESP32 microcontroller is then programmed to interface seamlessly with these sensors, ensuring consistent data reading and transmission to the Blynk platform. Configuring the NodeMCU ESP32 involves setting up Wi-Fi connectivity with appropriate credentials to establish a stable connection for real-time data transmission. Once connected, the Blynk app is configured to provide users with visual access to real-time sensor data. This step enables remote monitoring of critical environmental metrics including temperature, humidity, UV radiation levels, rainfall, and light intensity.

It is imperative to rigorously validate the accuracy of sensor readings and the reliability of data transmission throughout the implementation process. This validation is crucial to ensuring that the system delivers precise environmental data, which is indispensable for applications spanning agriculture, urban planning, climate research, and transportation safety. By meticulously integrating these steps, the IoT-enabled weather

monitoring system emerges as a robust tool for acquiring and analysing essential environmental insights effectively. Two distinct tools are utilized for the implementation of the climate sense such as Arduino IDE for programming the NodeMCU ESP32, Blynk platform for data visualization and remote access.

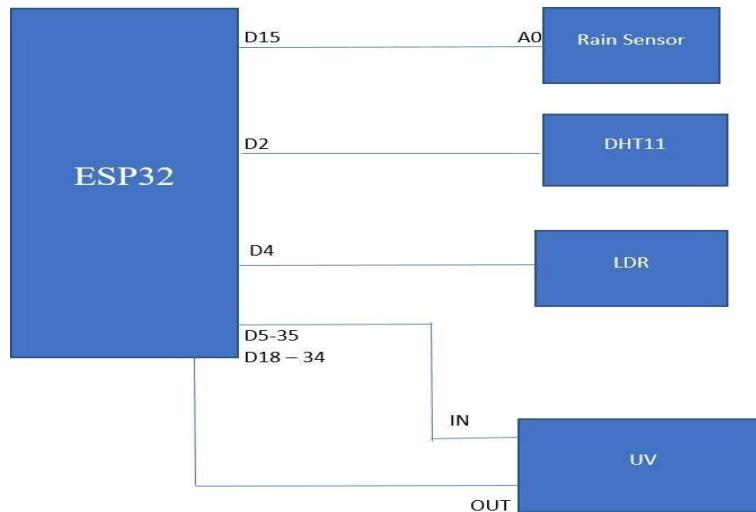


Fig. 2. Circuit diagram for “climate sense”

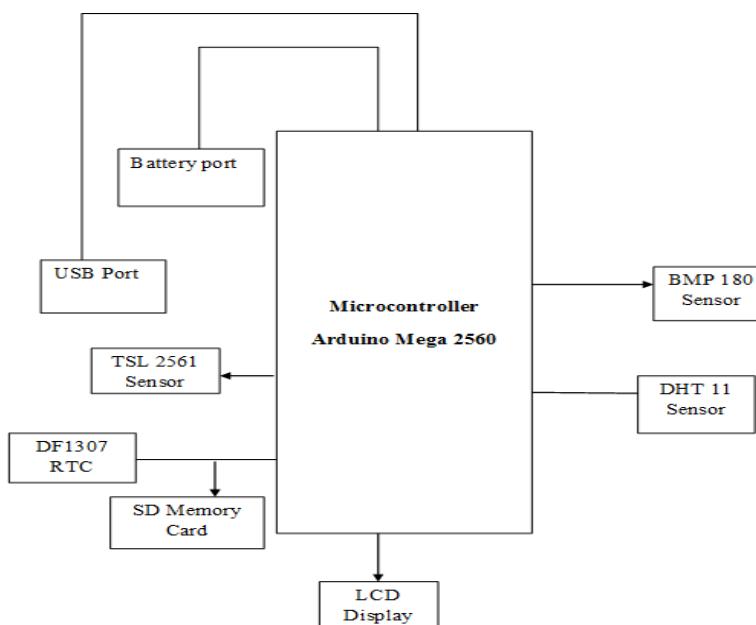


Fig. 3. Prototype design of “climate sense”

IV. Experimental Setup and Results

The Climate Sense research successfully gathered real-time weather data using a variety of sensors. The DHT11 sensor provided accurate measurements of temperature and humidity, with temperature readings ranging from 20°C to 35°C and humidity levels varying between 40% and 90% over the testing period. The data indicated a direct correlation between temperature and humidity, with higher humidity levels observed during early morning and late evening hours when temperatures were lower. The rain drop sensor accurately detected the presence and intensity of rainfall, showing several instances of light to moderate rainfall,

primarily occurring during afternoon hours. Its sensitivity enabled it to detect even slight drizzles, ensuring comprehensive precipitation monitoring. UV radiation levels fluctuated significantly throughout the day, peaking during midday when the sun was at its highest point, with UV index readings ranging from 0 to 9. This data is crucial for assessing potential health risks associated with UV exposure. The LDR sensor recorded light intensity levels, which varied from low during early morning and late evening to very high during midday. The sensor's data showed a clear pattern of increasing light intensity in the morning, peaking around noon, and gradually decreasing towards the evening.

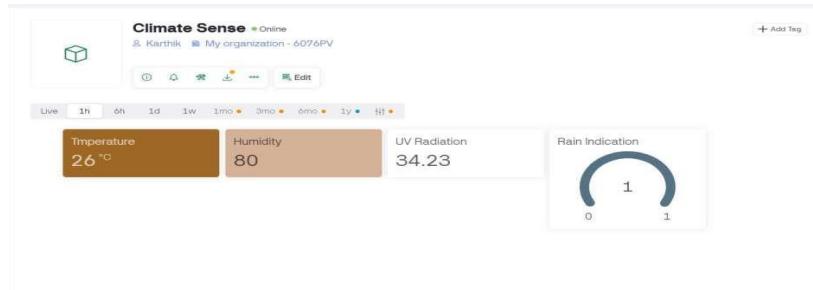


Fig. 4. User interface of "Climate Sense" Blynk Cloud Console

The NodeMCU ESP32 microcontroller efficiently transmitted the collected data to the Blynk platform, with the custom PCB board facilitating stable sensor connections and reliable data transmission. Users could access real-time data visualization through the Blynk app, which displayed the data in a user-friendly interface with graphs and alerts. The data collected was consistent and reliable, with minimal discrepancies observed during testing. Regular calibration and validation of sensors ensured the accuracy of measurements, and the system's ability to provide continuous data without significant downtime highlighted its robustness.

The results obtained from the Climate Sense research demonstrate the effectiveness of using IoT technology for real-time weather monitoring. The comprehensive data collected by the various sensors provides valuable insights into environmental conditions, which can be used for multiple applications such as precision agriculture, urban planning, and climate research. Compared to existing systems, the integration of multiple sensors and the use of the Blynk platform for data visualization represent significant advancements in weather monitoring technology. The ability to monitor multiple environmental parameters in real-time allows for a more holistic understanding of weather patterns. The seamless integration with the Blynk platform enhances user accessibility and engagement, enabling informed decisionmaking based on accurate and timely data. Overall, the Climate Sense research successfully addresses the need for real-time, comprehensive weather data. The results validate the system's design and highlight its potential to improve resilience against climate change impacts through informed decision-making and enhanced environmental insights.

Datetime	Temprature	Humidity	UV Radiation	Rain Indication
2024-07-11 10:00:00.000	25	86	30.37	1
2024-07-11 13:00:00.000	27	88	22.75	1
2024-07-11 16:00:00.000	23	83	27.24	0
2024-07-11 19:00:00.000	22	82	18.68	1
2024-07-12 10:00:00.000	23	88	29.98	0
2024-07-12 13:00:00.000	25	87	22.45	0
2024-07-12 16:00:00.000	23	83	25.96	1
2024-07-12 19:00:00.000	21	81	19.13	1
2024-07-13 10:00:00.000	24	88	28.41	0
2024-07-13 13:00:00.000	27	85	29.51	1
2024-07-13 16:00:00.000	23	84	24.16	0
2024-07-13 19:00:00.000	22	82	20.1	0
2024-07-14 10:00:00.000	24	84	27.16	1
2024-07-14 13:00:00.000	22	81	26.87	1
2024-07-14 16:00:00.000	27	88	25.23	1
2024-07-14 19:00:00.000	21	87	19.75	0
2024-07-15 10:00:00.000	24	86	23.35	1
2024-07-15 13:00:00.000	22	83	27.8	1
2024-07-15 16:00:00.000	25	88	24.36	0
2024-07-15 19:00:00.000	20	87	19.07	0

Fig. 5. Result Data on different date

The integration of multiple sensors with the NodeMCU ESP32 and the utilization of the Blynk platform for real-time data visualization offer significant advancements in weather monitoring and analysis. The deployment of sensors such as the DHT11 for temperature and humidity, UV sensors, rain sensors, and LDR sensors on a general-purpose PCB board, along with the reliable data transmission capabilities of the NodeMCU ESP32, has demonstrated robust performance in capturing and transmitting environmental data accurately. The system's compact design, low power consumption, and capability to be powered by solar panels present a sustainable and cost-effective solution for weather monitoring. This is particularly beneficial in remote or underdeveloped regions where access to traditional power sources may be limited.

When compared to existing weather monitoring systems, the proposed IoT-enabled weather station offers several improvements and advantages. Traditional weather monitoring systems often rely on wired connections and centralized data collection points, which can be expensive and difficult to maintain. In contrast, the wireless communication capabilities of the NodeMCU ESP32 address these limitations by providing reliable Wi-Fi connectivity and eliminating the need for wired infrastructure. This setup not only reduces costs but also enhances flexibility and scalability, making it easier to deploy the weather monitoring system in various environments without the constraints of constant internet connectivity.

V. CONCLUSION

The proposed IoT-enabled smart weather system offers significant benefits across various sectors through real-time, accurate environmental data. In agriculture, it helps farmers optimize irrigation, protect crops, and improve the use of fertilizers and pesticides, leading to better yields and reduced losses. Urban planners can manage infrastructure efficiently, optimize HVAC systems, improve traffic management, and enhance public safety during extreme weather events. Environmental researchers benefit from continuous weather data to study climate patterns and pollution levels, supporting long-term monitoring and climate change strategies. Disaster management authorities use real-time alerts for timely evacuations during storms and floods, reducing risks to human life and property. The transportation sector leverages weather data for route planning and safety in aviation, marine, and road transport.

In healthcare, accurate weather information aids in preparing for weather-related health issues, improving patient care and reducing facility strain. Event organizers use weather forecasts for better planning and enjoyment of outdoor activities. The system also optimizes renewable energy sources, predicting energy generation and

managing supply effectively. Applications extend to smart home automation, controlling lighting, heating, and irrigation based on real-time weather data. Educational institutions utilize the data for teaching and research, while wildlife conservation efforts benefit from monitoring weather conditions in habitats. The insurance industry uses precise weather data to assess risk and manage claims, and the tourism industry enhances tourist experiences with accurate weather information. Sports teams and event coordinators make informed decisions about schedules and conditions using real-time data. Integrating IoT and machine learning, this smart weather system improves operational efficiency, safety, and environmental sustainability across various fields.

The proposed IoT-enabled smart weather system offers real-time, accurate environmental data, enhancing various sectors significantly. In agriculture, it helps farmers plan irrigation, protect crops, and optimize fertilizer and pesticide use, improving yields and reducing losses. Urban planners and municipal authorities can manage infrastructure efficiently, optimize HVAC systems, improve traffic, and enhance public safety during extreme weather events. Environmental researchers benefit from continuous weather data for studying climate patterns and pollution levels. Disaster management authorities use real-time alerts for storms and floods, facilitating timely evacuations and reducing risks. The transportation and logistics sector can plan routes for aviation, marine, and road transport, ensuring safety. Healthcare providers prepare for weather-related health issues, improving patient care. Event organizers use forecasts for better planning of sports events and concerts.

The system supports energy management by optimizing renewable energy sources, predicts energy generation, and manages supply effectively. It finds applications in smart home automation, controlling lighting, heating, and irrigation. Schools and universities can use the data for teaching and research. Additionally, smart weather systems aid wildlife conservation by monitoring habitats, help the insurance industry assess risk, provide tourists with accurate weather information, and assist sports teams in scheduling. Integrating IoT and machine learning, this system offers significant improvements over traditional methods, enhancing operational efficiency, safety, and environmental sustainability. Based on the results and findings of the Climate Sense research, several key recommendations can enhance its performance, reliability, and applicability. Firstly, integrating additional sensors to measure air quality (CO₂, NO₂), wind speed, and soil moisture will provide comprehensive environmental monitoring. Developing advanced data analytics, such as machine learning algorithms to predict weather patterns and detect anomalies, can provide actionable insights. Implementing low-power hardware and energy-efficient protocols, including solar panels and energy harvesting, will enhance energy efficiency and self-sustainability.

Improving network connectivity by incorporating cellular networks (GSM, LTE) and low-power wide-area networks (LoRaWAN) will ensure reliable data transmission in remote areas. Developing a modular design will facilitate easy scaling and deployment, creating a distributed weather monitoring network. Enhancing the Blynk app's user interface with detailed visualizations, customizable alerts, and historical data analysis will boost user engagement. Strengthening data encryption and secure storage will protect data integrity and user privacy. Fostering collaboration with local authorities and organizations, and utilizing crowdsourced data from citizen scientists, will enhance data collection and community involvement. Exploring cost-effective sensor and hardware alternatives, and collaborating with manufacturers, will help reduce costs. Developing a real-time alert system for significant weather changes, using SMS, email, and push notifications, will ensure timely dissemination of critical information. Lastly, conducting extensive field testing in various climatic conditions will validate performance and reliability, providing insights for further improvements. By addressing these

recommendations, the Climate Sense research can evolve into a more robust, reliable, and versatile weather monitoring system, offering significant benefits across various sectors.

REFERENCES

- [1] J. P. Mondol, K. R. Mahmud, M. G. Kibria, and A. K. Al Azad, "IoT based Smart Weather Monitoring System for Poultry Farm," 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT). IEEE, pp. 229–234, Nov. 28, 2020. doi: 10.1109/icaict51780.2020.9333535.
- [2] Shivanshu, P. Nagwanshi, and A. Chauhan, "Smart Real Time Weather Forecasting System," 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). IEEE, pp. 558–562, Dec. 17, 2021. doi: 10.1109/icac3n53548.2021.9725697.
- [3] J. Mabrouki, M. Azrour, D. Dhiba, Y. Farhaoui, and S. E. Hajjaji, "IoT-based data logger for weather monitoring using arduino-based wireless sensor networks with remote graphical application and alerts," *Big Data Mining and Analytics*, vol. 4, no. 1. Tsinghua University Press, pp. 25–32, Mar. 2021. doi: 10.26599/bdma.2020.9020018.
- [4] L. P. S. S. K. Dayananda, A. Narmilan, and P. Pirapuraj, "An IoT based Low-cost Weather Monitoring System for Smart Farming," *Agricultural Science Digest - A Research Journal*, no. Of. Agricultural Research Communication Center, Oct. 11, 2021. doi: 10.18805/ag.d-370.
- [5] Dr. Praveen Banasode, Dr. Poorna Chandra, "RideGuard: IoT-Enabled Smart Helmet with Ride Tracking, Navigation, Accident, and Alcohol Detection Features" *GIS Science Journal*, Volume 11 Issue 7 2024, Page 882– 890, DOI: 20.18001.GSJ.2024.V11I7.24.41185673.
- [6] A. K. Betts, R. Desjardins, D. Worth, and B. Beckage, "Climate coupling between temperature, humidity, precipitation, and cloud cover over the Canadian Prairies," *Journal of Geophysical Research: Atmospheres*, vol. 119, no. 23. American Geophysical Union (AGU), Dec. 11, 2014. doi: 10.1002/2014jd022511.
- [7] T. Singh and M. Asim, "Weather Monitoring System Using IoT," *Lecture Notes in Electrical Engineering*. Springer Singapore, pp. 247–253, 2021. doi: 10.1007/978-981-16-4149-7_21.
- [8] M. Pradeep, Dhruva R Rinku, P. Swapna, V. Jyothi, A. Athiraja, G. Prasannakumar, "An IoT Based Greenhouse Remote Monitoring System for Automation of Supervision for Optimal Plant Growth", 2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS), vol.1, pp.797-802, 2024.
- [9] Juraj Ďud'ák, Gabriel Gašpar, Roman Budjač, Ivan Sládek, Peter Husár, "A Low-Power Data Logger With Simple File System for Long-Term Environmental Monitoring in Remote Areas", *IEEE Sensors Journal*, vol.23, no.24, pp.31178-31195, 2023.
- [10] A. Indu, S.Magesh Kumar, "An Approach for Implementing Innovative Weather Monitoring System with DHT11 Sensor and Arduino Uno Tool based on IoT", 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp.274-278, 2022.