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1. Introduction 

The advent of cloud computing has revolutionized the delivery and scalability of digital services, with Virtual 

Machine Images (VMIs)[1] playing a central role in enabling rapid deployment and efficient resource utilization. 

These VMIs encapsulate operating systems, software configurations, and application states, allowing seamless 

provisioning of services across diverse cloud platforms. In multi-cloud environments where organizations leverage 

multiple cloud providers for redundancy, flexibility, and compliance, the strategic deployment of VMIs is critical to 

achieving operational efficiency. However, while much attention has been devoted to securing VMIs before 

deployment, the post-deployment phase remains a significant vulnerability, exposing cloud infrastructures to 

sophisticated and evolving threats[2]. Once deployed, VMIs operate in distributed and dynamic environments that are 

characterized by interconnected cloud services and varying operational demands. These post-deployment dynamics 
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[3] introduce a spectrum of challenges that traditional security frameworks are ill-equipped to address. The runtime 

behavior of virtual machines is influenced by fluctuating workloads, user interactions, and evolving cyber threats, 

such as zero-day vulnerabilities[4], unauthorized access attempts, and resource hijacking (e.g., cryptojacking). These 

threats exploit the inherent complexities and dynamism of multi-cloud systems, where a lack of cohesive oversight 

can lead to significant security gaps[5]. 

The distributed architecture of multi-cloud environments further exacerbates these challenges. Organizations 

often deploy VMIs across multiple cloud providers, each with distinct configurations, policies, and security tools. This 

heterogeneity complicates the implementation of unified monitoring and response mechanisms, resulting in 

fragmented security oversight. Transitioning VMIs between cloud platforms, a common practice in multi-cloud 

operations, creates additional vulnerabilities by exposing sensitive data and configurations to varied and potentially 

less secure environments. Furthermore, the sheer scale and variability of multi-cloud systems make it difficult to 

maintain up-to-date security measures. The rapid state changes in deployed VMs, driven by the dynamic provisioning 

and de-provisioning of resources, can outpace the capabilities of traditional security policies, leaving organizations 

exposed to new and unexpected threats. In this context, ensuring continuous protection for VMIs becomes an 

increasingly complex and critical task. 

Traditional approaches to securing VMIs during their post-deployment phase predominantly rely on reactive 

strategies, addressing vulnerabilities only after they have been exploited. These methods often involve static rule-

based systems that are designed to detect pre-identified patterns of anomalous behavior. While effective against known 

threats, such systems are inherently limited in their ability to identify novel or sophisticated attacks, such as advanced 

persistent threats (APTs) and zero-day exploits[7]. This limitation arises from their dependence on predefined 

signatures and thresholds, which cannot adapt to the ever-evolving tactics of cyber adversaries. Moreover, reactive 

systems frequently suffer from high rates of false positives, generating excessive alerts that overwhelm security teams 

and delay response times. This inefficiency is particularly problematic in large-scale multi-cloud environments, where 

the volume of alerts can become unmanageable. The resulting delays in addressing genuine threats increase the risk 

of data breaches, service disruptions, and reputational damage.  

The fragmented nature of security tools across different cloud platforms further compounds these issues [8]. Each 

provider offers proprietary solutions for monitoring and threat detection, leading to a lack of interoperability and 

standardization[8]. This fragmentation forces organizations to adopt a siloed approach to security management, 

making it difficult to implement cohesive anomaly detection and response strategies across multi-cloud deployments. 

Consequently, security gaps often emerge during transitions between platforms, providing opportunities for malicious 

exploitation. Another significant limitation of existing solutions is their reliance on manual interventions to address 

detected anomalies [9]. Security teams are tasked with interpreting alerts, diagnosing issues, and deploying mitigation 

strategies processes that are inherently time-consuming and prone to human error. In dynamic and distributed multi-

cloud environments, where the window for effective response is often narrow, such delays can have catastrophic 

consequences. Finally, the absence of robust mechanisms for transparency and auditability in traditional frameworks 

undermines their effectiveness. Although logging and reporting are common practices, these logs are often stored in 

centralized systems that are susceptible to tampering or loss during a security incident. This lack of immutable and 

trustworthy records not only hinders regulatory compliance but also complicates post-incident forensic investigations, 

leaving organizations without a clear understanding of the breach's scope or origin [10]. 

The inherent limitations of reactive security measures underscore the need for a paradigm shift towards proactive 

and adaptive solutions. By addressing threats dynamically and reducing reliance on manual processes, next-generation 

frameworks can significantly enhance the resilience and security of VMIs in multi-cloud environments. Real-time 

anomaly detection and mitigation represent a fundamental departure from traditional reactive security strategies, 

offering a proactive approach to addressing runtime threats. This paradigm leverages advanced technologies, such as 

machine learning (ML) and artificial intelligence (AI), to continuously monitor the behavior of deployed VMs, 

identifying deviations from normal patterns as they occur. Unlike static rule-based systems, real-time detection 

mechanisms can adapt to evolving threats and operational contexts, enabling the identification of complex and 

previously unknown attacks. Machine learning models form the backbone of effective real-time anomaly detection 
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systems. By analyzing metrics such as CPU and memory utilization, network traffic, file access patterns, and system 

calls, these models can construct behavioral baselines for VMIs. Anomalies are detected when deviations from these 

baselines exceed acceptable thresholds, allowing the system to identify potential security incidents with high precision. 

Advanced techniques, such as time-series analysis and clustering algorithms, further enhance the system's ability to 

differentiate between legitimate variability and malicious activity. Equally critical to real-time security is the ability 

to respond to detected anomalies dynamically. Automated mitigation strategies, such as isolating compromised VMs, 

rolling back to verified snapshots, or terminating malicious processes, ensure that threats are neutralized before they 

can escalate. These automated responses eliminate the delays associated with manual interventions, significantly 

reducing the potential impact of security incidents. In addition, self-healing mechanisms—where the system 

automatically restores affected VMs to a known secure state—enhance operational resilience and reduce downtime. 

The integration of real-time detection and mitigation with blockchain technology provides an additional layer of 

security and transparency. By logging detected anomalies, response actions, and resulting system states in an 

immutable ledger, the system ensures that all events are securely recorded and tamper-proof. This transparency 

facilitates regulatory compliance and supports forensic investigations, providing organizations with the tools to 

demonstrate accountability and learn from past incidents.  In summary, the adoption of real-time anomaly detection 

and mitigation represents a transformative approach to securing VMIs in multi-cloud environments. By addressing 

runtime threats dynamically and automating responses, this proactive framework not only mitigates security risks but 

also enhances operational efficiency, transparency, and user trust. This shift from reactive to proactive security marks 

a critical step forward in meeting the demands of modern cloud computing infrastructures. 

The primary objective of this research is to develop a robust security framework that integrates real-time anomaly 

detection and automated response mechanisms with blockchain-based Virtual Machine Image (VMI) verification. The 

proposed system addresses runtime security gaps by proactively identifying and mitigating threats during the post-

deployment phase in multi-cloud environments. Leveraging blockchain's immutable integrity and machine learning's 

dynamic adaptability, this framework aims to establish a comprehensive and resilient security paradigm. 

• Enhancing Post-Deployment Security: Augmenting the pre-deployment integrity verification of VMIs with 

continuous runtime monitoring to detect deviations from expected behavior in real time. 

• Automating Threat Mitigation: Implementing intelligent response mechanisms capable of isolating, 

neutralizing, and recovering from detected anomalies without manual intervention, thereby reducing 

response time and minimizing operational impact. 

• Ensuring Transparency and Trust: Leveraging blockchain's tamper-proof logging capabilities to 

document anomalies, responses, and state transitions, creating an auditable and trustworthy record of security 

events. 

• Supporting Multi-Cloud Interoperability: Developing a system that integrates seamlessly across diverse 

cloud platforms, enabling consistent security measures regardless of provider-specific configurations. 

This objective not only addresses the reactive limitations of traditional security solutions but also pioneers a 

proactive approach to safeguarding VMIs, ensuring resilience and trustworthiness in increasingly complex cloud 

ecosystems. 

This study addresses the following key research questions to guide the development and evaluation of the proposed 

framework: 

1. How can real-time anomaly detection be effectively integrated with blockchain technology to enhance the security 

of VMIs in multi-cloud environments?  

2. What machine learning techniques are most effective for identifying and classifying anomalies in the dynamic 

and heterogeneous context of multi-cloud systems? 

3. How can automated mitigation strategies be designed to promptly neutralize threats while maintaining operational 

efficiency? 

4. How can cross-platform compatibility be achieved to provide a unified security framework across multiple cloud 

service providers? 
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This research makes the following significant contributions to the field of cloud security: 

• A Novel Anomaly Detection System Powered by Machine Learning: Introduces a real-time anomaly 

detection system leveraging machine learning to identify emerging threats. 

• Automated, Blockchain-Logged Mitigation Strategies : Develops a framework for automated threat 

mitigation with blockchain-based immutable logging. 

• Cross-Platform Compatibility in Multi-Cloud Setups: Designs a platform-agnostic system ensuring 

seamless security across diverse cloud providers. 

2. Related Work 

2.1 Blockchain in Cloud Security 

Blockchain technology has been increasingly utilized in cloud security to enhance verification, logging, and overall 

data integrity. Several studies have explored the integration of blockchain with cloud computing to address security 

challenges[11][12]. Blockchain's distributed ledger provides a tamper-proof system for maintaining cloud data 

provenance, allowing for the tracking and recording of data object operations while preserving user privacy[13]. One 

of the key applications of blockchain in cloud security is the implementation of authentication and access control 

mechanisms. Blockchain and smart contracts offer improved data and rule confidentiality, integrity, and system 

availability by eliminating single points of failure [14]. Additionally, blockchain-based public key cryptosystems have 

been proposed to protect data in cloud storage, automatically encrypting data using homomorphic techniques and 

storing ciphertext indexes in the blockchain [15]. However, there are still gaps in addressing post-deployment threats 

in blockchain-based cloud security solutions. While blockchain provides robust security features, it also introduces its 

own vulnerabilities, such as mining attacks and key management issues, which need to be addressed [16]. Furthermore, 

the emergence of quantum computing poses a significant threat to blockchain security, particularly in the areas of 

public-key cryptography and hash functions, necessitating the development of quantum-resistant cryptosystems for 

blockchain architectures [17]. In conclusion, while blockchain has shown promise in enhancing cloud security through 

improved verification and logging mechanisms, there is a need for further research to address post-deployment threats 

and emerging challenges such as quantum computing. Future work should focus on developing more resilient 

blockchain-based security solutions that can withstand both traditional and quantum-based attacks in cloud 

environments. 

2.2 Real-Time Anomaly Detection in Cloud Systems 

Real-time anomaly detection in cloud systems has become increasingly important with the growth of Industry 4.0 and 

the Internet of Things. Machine learning models and frameworks play a crucial role in detecting anomalies efficiently 

and accurately in these complex environments. Several ML models have been proposed for real-time anomaly 

detection in cloud systems. These include Hierarchical Temporal Memory (HTM) combined with Bayesian Network 

(BN)[18] ensemble models combining Local Outlier Factor, One-Class Support Vector Machine, and Autoencoder 

[19], and Principal Component Analysis (PCA), Fully Connected Autoencoder (FC-AE), and Convolutional 

AutoEncoder (C-AE) [20] . Additionally, Federated Learning-based approaches have been explored to address privacy 

concerns in smart grid anomaly detection [21].  Key challenges in implementing real-time anomaly detection in cloud 

systems include resource efficiency, accuracy, and scalability. To address these challenges, researchers have proposed 

various solutions. For instance, edge computing and fog computing architectures have been utilized to reduce network 

traffic and cloud resource utilization .The RAMP (Real-Time Aggregated Matrix Profile) system has been developed 

to detect anomalies in scientific workflow systems in real-time, incorporating user feedback to improve accuracy [22] 

in conclusion, real-time anomaly detection in cloud systems requires a balance between accuracy, resource efficiency, 

and scalability. Hybrid approaches combining multiple ML models, edge computing, and privacy-preserving 

techniques show promise in addressing these challenges. As the field evolves, further research is needed to develop 

more robust and adaptable solutions for diverse cloud environments. 
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2.3 Automated Mitigation in Cloud Security 

Automated mitigation techniques in cloud security have become increasingly important as organizations seek to 

rapidly respond to threats and vulnerabilities. Existing approaches include isolation of compromised resources and 

rollback to known-good states [23]. These techniques aim to minimize the impact of security incidents and restore 

normal operations quickly. However, integrating blockchain and Mobile Cloud Computing (MCS) for automated 

mitigation presents some challenges. The highly dynamic and distributed nature of mobile ad-hoc networks makes it 

difficult to implement traditional consensus protocols used in blockchain systems[24]. Additionally, the computational 

requirements of blockchain consensus mechanisms like proof-of-work can be prohibitive for resource-constrained 

mobile devices [25]. To address these limitations, researchers have proposed novel approaches. For example, the 

AdChain cloud architecture uses a stability-aware consensus protocol designed specifically for mobile ad-hoc 

environments. Other work has been explored using proof-of-stake consensus to reduce computational overhead. 

Integrating Software Defined Networking (SDN) with blockchain can also improve the durability and load balancing 

of cloud infrastructure for Industrial IoT applications [26] . While challenges remain, these innovations show promise 

for enhancing automated mitigation capabilities through blockchain integration in mobile and cloud environments. 

2.4 Research Gaps and Challenges 

While significant advancements have been made in blockchain, anomaly detection, and automated mitigation, 

several critical gaps remain: 

1. Post-Deployment Security: Existing solutions focus on pre-deployment verification but fail to address 

runtime threats such as zero-day attacks and insider breaches. 

2. Fragmentation: Current systems lack integration, with blockchain, anomaly detection, and mitigation 

operating in silos, reducing efficiency and responsiveness. 

3. Scalability: Security frameworks often struggle to scale across large, distributed, and multi-cloud 

environments without excessive resources overhead. 

4. Interoperability: Tools designed for specific cloud providers lack standardization, complicating their 

deployment in heterogeneous multi-cloud systems. 

5. Automation: Limited integration between anomaly detection and automated mitigation delays threat 

responses and reduces effectiveness. 

6. Emerging Threats: Quantum computing poses risks to blockchain cryptography, necessitating quantum-

resistant security mechanisms. 

A unified framework integrating blockchain, real-time anomaly detection, and automated mitigation is essential to 

addressing these gaps, ensuring comprehensive, scalable, and adaptive cloud security. 

3. Methodology 

3.1 Proposed Framework Architecture 

The proposed security framework, named "Aegis Haven Framework", embodies the concept of an impenetrable shield 

(Aegis) and a secure refuge (Haven). This framework addresses critical post-deployment challenges in multi-cloud 

environments by integrating blockchain technology, real-time anomaly detection, and automated mitigation 

mechanisms. It ensures robust integrity verification, precise anomaly detection, and seamless recovery for Virtual 

Machine Images (VMIs), all while maintaining adaptability and scalability across diverse cloud platforms. Following 

are the core components of the proposed framework i.e Block chain Layer(Blockchain Vault), Anomaly Detection 

layer and Mitigation Layer. 

1. The Blockchain Vault secures VMI integrity and authenticity by storing cryptographic hashes and providing an 

immutable record of security events. Smart contracts automate hash verification processes, while a lightweight proof-
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of-stake (PoS) consensus mechanism ensures efficiency in multi-cloud settings. Here the Unique Implementation is 

performed in following manner i.e  Dynamic snapshot verification via smart contracts guarantees runtime integrity 

during restoration 

2. Anomaly Detection Engine Using ML/AI Models : The anomaly detection layer employs advanced machine 

learning algorithms to identify runtime deviations from normal VMI behavior. It adapts dynamically to evolving 

threats using both spatial and temporal anomaly detection techniques. 

Novel Algorithms: 

▪ Variational Autoencoders (VAEs): Capture latent patterns of normal behavior and detect anomalies 

through reconstruction errors. 

▪ Long Short-Term Memory Networks (LSTMs): Model temporal dependencies to identify 

anomalies in time-series data, such as resource usage spikes. 

▪ Federated Learning with Adaptive Thresholding: Enable decentralized training while preserving 

data privacy across cloud nodes. 

▪ Hybrid Clustering + Reinforcement Learning (RL): Combine clustering of high-dimensional data 

with RL to optimize anomaly thresholds dynamically. 

3. Mitigation Mechanism for Isolation and Recovery : The mitigation layer automates responses to anomalies, 

minimizing downtime and manual intervention. It intelligently neutralizes threats and restores operations through a 

combination of isolation, rollback, termination, and self-healing. Here major implementation is Deep Q-Networks 

(DQNs)[27] which Optimize decision-making for mitigation actions based on severity and operational impact. 
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Figure 1.  Proposed AegisHaven Framework Architecture 

Figure 1 framework integrates a robust multi-layered approach to securing Virtual Machine Images (VMIs) in multi-

cloud environments. The Blockchain Vault Layer ensures tamper-proof integrity through its Blockchain Ledger, 

Smart Contracts for automated verification, and distributed Consensus Mechanisms that propagate approved 

transactions across Blockchain Nodes. The HavenEye Anomaly Detection Engine employs Behavioral Baseline 

Generators, advanced ML/AI models, Feature Extractors, and Real-Time Monitoring Agents to detect and analyze 

anomalies in runtime telemetry data. The HavenClaw Mitigation Layer dynamically responds to threats using its 

Response Decision Engine, which orchestrates actions such as VM isolation, state rollback, malicious termination, 

and self-healing mechanisms while maintaining transparency through blockchain-logged action records. This 

integrated architecture exemplifies a proactive and adaptive security paradigm, leveraging blockchain’s immutability, 

ML/AI’s predictive capabilities, and automated mitigation strategies to provide comprehensive protection and 

recovery in modern cloud infrastructures. 

3.2 Real-Time Anomaly Detection System 

The real-time anomaly detection system is a critical component of the proposed framework, designed to dynamically 

identify deviations in Virtual Machine Image (VMI) behavior[28]. It leverages advanced machine learning and 

artificial intelligence algorithms to detect spatial and temporal anomalies in distributed, multi-cloud environments. 

The system integrates theoretical underpinnings with mathematical models to enhance detection precision, scalability, 

and adaptability[29]. 

Feature Selection: Feature selection is essential for defining the operational characteristics of VMIs that capture both 

normal and anomalous behaviors. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} represent the set of telemetry data features for a VMI. These 

features include: 

• Resource Utilization: CPU usage ( 𝑥𝑐𝑝𝑢
 ), memory consumption ( 𝑥𝑚𝑒𝑚 ), and disk I/O activity ( 𝑥disk  ). 

• Network Traffic Metrics: Packet rate ( 𝑥𝑝𝑘𝑡 ), bandwidth consumption ( 𝑥𝑏𝑤 ), and anomalies in connection 

behavior ( 𝑥comn  ). 

• System-Level Operations: Features derived from system call frequencies ( 𝑥sys  ), process execution patterns 

( 𝑥proc  ), and file access behaviors ( 𝑥file  ). 

The feature vector 𝑋 is preprocessed and normalized to ensure uniform scaling across all metrics, represented 

mathematically as: 

𝑥𝑖
′ =

𝑥𝑖−𝜇𝑖

𝜎𝑖
,  ∀𝑖 ∈ {1,2, … , 𝑛}                          (1) 

where 𝜇𝑖 is the mean and 𝜎𝑖 is the standard deviation of the feature 𝑥𝑖. 

Machine Learning Models and Novel Algorithms: The system employs a combination of supervised and 

unsupervised learning approaches, leveraging state-of-the-art algorithms for dynamic anomaly detection. 

1. Variational Autoencoders (VAEs): VAEs model the normal behavior of VMI features by learning a latent 

representation 𝑧. The encoder maps input 𝑥 into a probabilistic latent space: 

𝑞𝜙(𝑧 ∣ 𝑥) ∼ 𝒩(𝜇𝑧, 𝜎𝑧
2)                               (2) 

where 𝜙 represents the encoder parameters. The decoder reconstructs 𝑥 from 𝑧, and anomalies are detected by 

evaluating reconstruction errors 𝜖 : 
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𝜖 =∥ 𝑥 − 𝑥̂ ∥2
2,   where 𝑥̂ is the reconstructed input.                    (3) 

A threshold 𝜏 is set for 𝜖, with 𝜖 > 𝜏 indicating an anomaly. 

2. Long Short-Term Memory Networks (LSTMs): LSTMs are employed to capture temporal dependencies in 

time-series data {𝑥𝑡}𝑡−1
𝑇 . The cell state 𝑐𝑡 and hidden state ℎ𝑡 are updated iteratively: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓),  𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ tanh (𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡)

                      (4) 

Anomalies are identified when ℎ𝑡 deviates significantly from the baseline patterns of ℎ𝑡−1. 

3 Federated Learning with Adaptive Thresholding 

Federated learning ensures decentralized model training across multiple nodes. Let 𝒟𝑖 represent the local dataset at 

node 𝑖, and ℳ represent the global model. The global model is updated using: 

ℳ =
1

𝑁
∑  𝑁

𝑖=1 ℳ𝑖 ,   where ℳ𝑖 = argmin𝜃𝑖
 ℒ(𝒟𝑖 , 𝜃𝑖)                                    (5) 

Adaptive thresholding dynamically adjusts the anomaly threshold 𝜏 based on workload variations, ensuring real-

time adaptability. 

Model Training and Adaptation: The models are trained using a dataset 𝒟 = {𝑋𝑛, 𝑦𝑛}𝑛−1
𝑁 , where 𝑋𝑛 is the feature 

vector and 𝑦𝑛 ∈ {0,1} denotes whether the data point is normal or anomalous. Training incorporates: 

• Latent Representations: VAEs reduce dimensionality, preserving only critical features for anomaly 

detection. 

• Temporal Patterns: LSTMs learn from time-series sequences to identify temporal anomalies. 

• Decentralized Learning: Federated learning aggregates locally trained models into a global model, ensuring 

scalability and privacy. 

Dynamic Adaptability: The hybrid approach enables the system to dynamically adapt to changing workloads and 

threat patterns: 

• Reconstruction errors (𝜖) and temporal deviations (ℎ𝑡) trigger anomaly alerts. 

• Reinforcement learning fine-tunes thresholds (𝜏) based on real-time feedback, ensuring continuous 

optimization. 

This theoretical and mathematical integration ensures the system's robustness, scalability, and precision in detecting 

anomalies, addressing evolving security challenges in distributed multi-cloud environments. 

3.3 Mitigation Mechanisms 

The Mitigation Mechanism Layer in the proposed framework provides automated, adaptive, and efficient responses 

to anomalies detected in the Virtual Machine Image (VMI) ecosystem. Designed to minimize operational downtime 

and prevent the propagation of threats, the layer employs techniques such as snapshot restoration, VM isolation, and 

self-healing capabilities. These techniques leverage pre-verified VMIs stored in the blockchain layer to ensure tamper-

proof integrity and transparency in response actions. 
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Figure 2. Mitigation Mechanism Framework 

Theoretical Model for Automated Mitigation : The mitigation mechanisms are driven by a Response Decision 

Engine (RDE) that evaluates the severity and nature of anomalies, determines the appropriate mitigation strategy, and 

executes it automatically. Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑘} represent the set of possible mitigation actions, including: 

1 Snapshot Restoration ( 𝑎restore  ): Restores the affected VMI to a last-known verified state. 

2 VM Isolation ( 𝑎isolate  ): Isolates the compromised VM from the network to prevent further spread of threats. 

3 Process Termination ( 𝑎terminate  ): Terminates malicious processes or rogue VM instances. 

4 Self-Healing ( 𝑎heal  ): Reconfigures or redeploys the VM to ensure system continuity. 

The RDE selects the action 𝑎∗ based on an optimization criterion: 

𝑎∗ = arg max
𝑎∈𝐴

𝑄(𝑠𝑡 , 𝑎)                           (6) 

where 𝑄(𝑠𝑡 , 𝑎) is the action-value function derived from reinforcement learning, representing the expected utility of 

acting 𝑎 in state 𝑠𝑡. States 𝑠𝑡 are defined by features such as anomaly severity, affected VM, and operational impact. 

Snapshot Restoration : Rollback the affected VMI to its most recent verified state stored in the blockchain. Let 𝑆 

denote the set of all snapshots for a VM, and ℎ𝑖 the cryptographic hash of snapshot 𝑖. The blockchain contains 

{ℎ1, ℎ2, … , ℎ𝑛}, representing verified snapshots. For a compromised VM, the system restores 𝑠̂ : 



 
 
 

 

Cuest.fisioter.2025.54(2):392-417                                                                                                                  401                                                                                                                          
 

 

1*J Maha Lakshmi, 2 

Krishna Prasad K ,3 

Viswanath G 

Proactive Security in Multi-Cloud Environments: A Blockchain-

Integrated Real-Time Anomaly Detection and Mitigation 

Framework 

𝑠̂ = arg max
𝑠∈𝑆

verified (ℎ𝑠)                      (7) 

where verified (ℎ𝑠) checks the integrity of ℎ𝑠 against the blockchain. This ensures that only validated, uncompromised 

snapshots are used for recovery. 

• Action Execution: Once 𝑠̂ is selected, the VM state is reverted to 𝑠̂, minimizing disruption and ensuring a 

safe operational state. 

VM Isolation : Prevent lateral movement of threats by isolating the compromised VM from the network. VM isolation 

is achieved by reconfiguring the network parameters of the VM. Let 𝒩 denote the network configuration, with 𝑝 

representing active network policies. Isolation is implemented as: 

𝒩isolate = 𝒩 ∖ 𝑝public                       (8) 

Here, 𝑝public  represents policies allowing external communication. By removing or disabling 𝑝public,  the VM is 

effectively sandboxed. The RDE issues commands the hypervisor or network controller to enforce isolation. Logs of 

the action are recorded in the blockchain for auditability. 

Process Termination : Objective: Neutralize malicious processes or fully compromised VMs to prevent further 

damage. Let 𝒫 = {𝑝1, 𝑝2, … , 𝑝𝑚} denote the set of all processes running on a VM. A process 𝑝𝑖  is flagged for 

termination if: 

𝒜(𝑝𝑖) > 𝜏                            (9) 

where 𝒜(𝑝𝑖) is an anomaly score derived from the anomaly detection system, and 𝜏 is the threshold for termination. 

Malicious processes are terminated using hypervisor-level commands. Terminated processes are logged in the 

blockchain to ensure transparency and prevent re-execution. 

Self-Healing : Objective: Reconfigure or redeploy VM instances to restore operational continuity after a mitigation 

action. Self-healing involves creating a new VM instance 𝑣̂ with verified parameters 𝜃 : 

𝑣̂ =  create_instance (𝜃),  𝜃 ⊆  Blockchain Parameters                  (10) 

The parameters 𝜃 are derived from the blockchain to ensure integrity. Deployment is carried out with minimal 

disruption to dependent applications. The newly deployed instance inherits the role of the compromised VM, restoring 

services without exposing vulnerabilities. 

Integration with Blockchain for Transparency : Each mitigation action is logged immutably in the blockchain to 

provide an auditable record of responses. Let ℒ denote the ledger, and 𝑎 the mitigation action. The log entry 𝑙 is: 

𝑙 = {𝑡, 𝑎, 𝑣, status }                                (11) 

where 𝑡 is the timestamp, 𝑣 is the affected VM , and status is the outcome of the action. The ledger is updated as: ℒ ←

ℒ ∪ 𝑙 

Dynamic Decision-Making : The RDE uses reinforcement learning to dynamically select the optimal mitigation 

action. The Qlearning update rule is given by: 

𝑄(𝑠𝑡 , 𝑎) ← 𝑄(𝑠𝑡 , 𝑎) + 𝛼 [𝑅(𝑠𝑡 , 𝑎) + 𝛾max
𝑎′

 𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎)]                             (12) 
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where: 

• 𝛼 : Learning rate. 

• 𝑅(𝑠𝑡 , 𝑎) : Reward function based on the success of action 𝑎 in state 𝑠𝑡. 

• 𝛾 : Discount factor for future rewards. 

Advantages of Mitigation Mechanisms 

1 Proactive Responses: Automates recovery actions, minimizing manual intervention and downtime. 

2 Robustness: Leverages blockchain-verified snapshots to ensure secure recovery. 

3 Transparency: Immutable logging in the blockchain fosters trust and accountability. 

4 Adaptability: Reinforcement learning ensures the system dynamically adjusts to evolving threats and 

operational contexts. 

This mathematically grounded approach ensures that the mitigation mechanisms are efficient, transparent, and robust, 

aligning with the research objective of securing VMIs in dynamic, multicloud environments. 

3.4 Integration with Blockchain 

The integration of blockchain technology within the framework ensures tamper-proof logging of anomalies and 

response actions, providing a transparent, auditable, and immutable record of all security events. This layer is essential 

for enhancing trust, regulatory compliance, and accountability in the management of Virtual Machine Images (VMIs) 

across distributed multi-cloud environments. 

Logging Anomalies and Response Actions for Auditability: Anomalies detected by the Anomaly Detection Engine 

and the corresponding mitigation actions executed by the Mitigation Mechanism are immutably logged into the 

blockchain. Let ℒ represent the blockchain ledger, and each log entry 𝑙 be defined as: 

𝑙 = {𝑡, 𝑣, 𝑎, 𝑠, 𝜖}                                  (13) 

where: 

• 𝑡 : Timestamp of the event. 

•  𝑣 : Identifier of the affected VMI. 

• 𝑎 : The mitigation action performed (e.g., isolation, rollback). 

• 𝑠 : The status of the action (e.g., success, failure). 

• 𝜖 : Anomaly reconstruction error or severity score. 

These log entries ensure that every detected anomaly and mitigation response is traceable, fostering transparency. The 

blockchain's decentralized nature ensures that these records cannot be altered, enabling post-incident audits and 

compliance with regulatory standards. 

Ensuring Tamper-Proof Records for Compliance : The blockchain layer guarantees tamper-proof integrity for all 

logged data using cryptographic hashing. For a given log entry 𝑙, its hash ℎ𝑙 is computed as: 

ℎ𝑙 = Hash (𝑙) = SHA − 256(𝑡 ∥ 𝑣 ∥ 𝑎 ∥ 𝑠 ∥ 𝜖)                                   (14) 

The blockchain maintains a chain of blocks {𝐵1, 𝐵2, … , 𝐵𝑛}, where each block 𝐵𝑖  contains: 



 
 
 

 

Cuest.fisioter.2025.54(2):392-417                                                                                                                  403                                                                                                                          
 

 

1*J Maha Lakshmi, 2 

Krishna Prasad K ,3 

Viswanath G 

Proactive Security in Multi-Cloud Environments: A Blockchain-

Integrated Real-Time Anomaly Detection and Mitigation 

Framework 

1 A list of log entry hashes {ℎ𝑙1
, ℎ𝑙2

, … }. 

2 A pointer to the hash of the previous block ℎ𝐵𝑖−1
. 

This structure ensures that any tampering with past records invalidates the chain, providing robust protection against 

data manipulation. Furthermore, the blockchain facilitates secure cross-validation of compliance records, ensuring 

that actions taken in response to anomalies meet organizational and regulatory requirements. 

Integration Workflow 

1 Anomaly Logging: The anomaly detection engine generates an alert upon detecting a deviation and logs 

details, including timestamps, severity scores, and affected VMIs, into the blockchain. 

2 Mitigation Action Logging: The response decision engine records each executed action, its outcome, and 

associated metadata into the blockchain for transparency. 

3 Audit and Compliance: Authorized entities access the blockchain ledger to verify actions and ensure 

adherence to operational policies and regulatory mandates. 

3.5 Multi-Cloud Compatibility 

The proposed framework is designed to ensure seamless integration and functionality across diverse cloud platforms, 

addressing the critical need for interoperability in modern multi-cloud environments. By leveraging cloud-native tools 

and standardized API designs [30], the framework achieves adaptability, scalability, and consistent security coverage 

across providers such as AWS[31], Azure[32], and Google Cloud[33]. 

Adapting the Framework to Cloud-Native Tools: The framework is architected to utilize cloud-native tools and 

services specific to each platform, ensuring optimal performance and compatibility. Let 𝒞 = {𝑐1, 𝑐2, … , 𝑐𝑛} represent 

the set of cloud platforms (e.g., AWS, Azure, Google Cloud), where each 𝑐𝑖 provides a unique set of tools 𝑇𝑖 = 

{𝑡1, 𝑡2, … , 𝑡𝑘} such as: 

• AWS: CloudWatch for telemetry data, Lambda for serverless event-driven responses, and EC2 snapshots for 

recovery. 

• Azure: Application Insights for anomaly detection telemetry, Logic Apps for automated workflows, and 

Managed Disks for state restoration. 

• Google Cloud: Stackdriver for monitoring, Cloud Functions for automation, and Persistent Disk snapshots 

for recovery. 

The framework dynamically maps its core functionalities-anomaly detection, blockchain integration, and mitigation 

mechanisms-to the corresponding tools in 𝑇𝑖 . For instance, telemetry collection by the Anomaly Detection Engine 

adapts to the native monitoring service of the cloud provider in use, ensuring streamlined operations without the need 

for additional infrastructure. 

Standardized API Design for Interoperability : To address the heterogeneity of cloud platforms, the framework 

incorporates a standardized API layer, denoted as 𝒜 = {𝑎1, 𝑎2, … , 𝑎𝑚}, enabling seamless interaction with cloud-

native tools and services. Each API endpoint 𝑎𝑖 is designed to abstract platform-specific operations into a unified 

interface, ensuring consistent functionality across providers. 

4. Design and Implementation of a Multi-Layered Security Framework for Cloud 

Environments 
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This section presents the technical architecture and implementation framework for multi-cloud security solutions, 

leveraging a carefully curated technology stack to ensure scalability, security, and seamless integration across diverse 

cloud platforms. The Anomaly Detection Engine is implemented using Python, supported by TensorFlow for deep 

learning-based anomaly detection through Variational Autoencoders (VAEs)[33] and Long Short-Term Memory 

(LSTM) networks [34], alongside Scikit-learn for traditional machine learning tasks like clustering and dimensionality 

reduction, and federated learning frameworks such as Flower for decentralized model training. The Blockchain Layer, 

developed in Solidity for Ethereum, facilitates secure and tamper-proof smart contracts to log anomalies, execute 

mitigation actions, and validate cryptographic hashes of Virtual Machine Images (VMIs), ensuring data integrity and 

resilience against rollback attacks. Multi-cloud compatibility is achieved through integration with native tools 

provided by AWS, Azure, and Google Cloud, leveraging services such as AWS CloudWatch, Lambda, and EC2 

Snapshots; Azure Application Insights, Logic Apps, and Managed Disks; and Google Cloud's Stackdriver, Cloud 

Functions, and Persistent Disks, enabling telemetry collection, automated workflows, and high-availability snapshot 

recovery. A Standardized API Layer abstracts platform-specific operations, providing a unified interface for cloud 

interactions, dynamic adaptation of functionalities, and scalability to integrate additional providers without major 

reconfiguration. The rationale for this stack emphasizes computational efficiency, security, and scalability, with 

Python enabling rapid prototyping and model scalability, Solidity ensuring robust blockchain security, and cloud-

native tools minimizing infrastructure complexity while maximizing operational efficiency. This comprehensive 

approach addresses modern cloud security challenges, delivering a scalable and secure solution for protecting Virtual 

Machine Images in dynamic, multi-cloud infrastructures. 

4.2 Dataset 

The proposed framework is evaluated using a synthetically generated dataset designed to simulate diverse Virtual 

Machine (VM) behaviors in multi-cloud environments with a size of 50000  records. Synthetic data is generated using 

tools such as the LOKI Framework [35]to model controlled attack scenarios, ensuring a balanced representation of 

normal and anomalous activities. Key attributes include resource utilization metrics (CPU, memory, disk I/O, and 

bandwidth), network traffic patterns, system-level operations, and labeled anomalies (e.g., cryptojacking, denial-of-

service attacks, and unauthorized access). The dataset is partitioned into training (70%), validation (15%), and testing 

(15%) subsets, enabling rigorous evaluation, hyperparameter tuning, and performance testing under realistic 

conditions. Preprocessing steps, including normalization and feature engineering, extracting temporal and spatial 

patterns to enhance anomaly detection using machine learning models like Long Short-Term Memory (LSTM) 

networks and Variational Autoencoders (VAEs). This synthetic dataset provides a robust platform for assessing 

anomaly detection capabilities across dynamic multi-cloud environments. 

 

4.3 System Configuration 

The proposed framework was implemented and evaluated on a high-performance computing environment optimized 

for scalability and reliability. The hardware configuration included Intel Xeon servers with 16 cores and 32 threads to 

enable parallel processing, 128 GB DDR4 RAM to handle memory-intensive computations, and 2 TB SSD storage to 

support fast data access and telemetry log storage. The system featured high-speed Gigabit Ethernet for low-latency 

communication within a simulated multi-cloud environment. Ubuntu 20.04 LTS provided a stable operating system 

platform, complemented by Python-based machine learning frameworks such as TensorFlow and Scikit-learn for 

model development. Blockchain components were deployed using Ethereum and Solidity, with Ganache utilized for 

local testing of smart contracts. Integration with cloud-native tools, including AWS CloudWatch, Azure Application 

Insights, and Google Stackdriver, was achieved via SDKs and CLIs, enabling seamless interaction and evaluation 

across diverse multi-cloud scenarios. This setup ensured comprehensive testing of the framework’s scalability, 

performance, and robustness. 

5. Experimental Results 

5.1 Performance Metrics: The proposed framework, AegisHaven, was rigorously evaluated based on multiple 

performance metrics, including anomaly detection accuracy, mitigation efficiency, logging latency, and scalability. 

The results validate the framework's robustness and effectiveness in securing Virtual Machine Images (VMIs) within 
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dynamic multi-cloud environments.The anomaly detection engine's performance was evaluated using standard 

classification metrics, including accuracy, precision, recall, and F1-score. Accuracy was calculated as the proportion 

of correctly identified instances (both normal and anomalous) to the total instances: 

Accuracy =
TP+TN

TP+TN+FP+FN
                     (15) 

where TP and TN denote the true positives and true negatives, respectively, and FP and FN represent false positives 

and false negatives. Precision, representing the proportion of correctly identified anomalies out of all predicted 

anomalies, was calculated as: 

Precision =
TP

TP+FP
                               (16) 

Recall (sensitivity), the measure of correctly identified anomalies among actual anomalies, was defined as: 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (17) 

Finally, the F1-score, which provides a harmonic mean of precision and recall, was computed as: 

F1-Score = 2 ⋅
 Precision ⋅ Recall 

 Precision + Recall 
                             (18) 

Response Times for Mitigation Actions: The efficiency of the mitigation mechanisms was assessed by measuring 

the average time required to execute specific actions, such as snapshot restoration, VM isolation, process termination, 

and selfhealing. The response time for each action (𝑇𝑎) was calculated as:  𝑇𝑎 =
∑  𝑛

𝑖−1  𝑇𝑎,𝑖

𝑛
, where 𝑇𝑎,𝑖 denotes the time 

taken for the 𝑖𝑡ℎ execution of action 𝑎, and 𝑛 represents the total number of executions. The average response time 

across all mitigation actions ( 𝑇avg  ) was further computed as: 

𝑇avg =
∑  𝑎∈𝐴  𝑇𝑎

|𝐴|
                              (19) 

where 𝐴 is the set of all mitigation actions. The framework demonstrated response times well within predefined 

thresholds ( 𝑇threshold  ), ensuring prompt isolation and recovery, thereby minimizing the impact of detected 

anomalies.The results validate the framework's ability to achieve high anomaly detection accuracy and precision while 

maintaining swift and efficient response times for mitigation actions. These findings underscore the framework's 

robustness and suitability for securing dynamic, multi-cloud environments against emerging threats. 

5.1.1 Anomaly Detection Performance 

The anomaly detection system in AegisHaven integrates advanced machine learning (ML) and artificial intelligence 

(AI) techniques to ensure high accuracy and adaptability. The framework employs Variational Autoencoders (VAEs), 

Long Short-Term Memory Networks (LSTMs), and Federated Learning with Adaptive Thresholding to detect 

anomalies dynamically. These methods capture behavioral, temporal, and spatial anomalies, addressing zero-day 

vulnerabilities and evolving threats. The performance of the anomaly detection system was assessed using standard 

classification metrics: accuracy, precision, recall, and F1-score. Table 1 summarizes these metrics for AegisHaven in 

comparison with baseline models (BCALS[36] and Logchain[37]) under varying VM loads. 

Table 1. Anomaly Detection Metrics (%) 

Metric AegisHaven (%) BCALS (%)[36] Logchain (%)[37] 
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Accuracy 96.5 82.3 89.2 

Precision 94.7 70.5 86.1 

Recall 93.8 68.2 84.5 

F1-Score 94.2 69.3 85.3 

 

AegisHaven demonstrated superior anomaly detection performance, achieving 96.5% accuracy, 94.7% precision, 

93.8% recall, and a 94.2% F1-score, surpassing baseline models BCALS[36] and Logchain[37]. Its high accuracy 

ensured effective classification, while strong precision minimized false positives, and high recall confirmed its ability 

to detect actual anomalies. The balanced F1-score highlights robustness in identifying diverse threats, including zero-

day vulnerabilities. Utilizing advanced techniques such as VAEs, LSTMs, and reinforcement learning, AegisHaven 

adapts dynamically to evolving security challenges, offering scalability, reliability, and adaptability in multi-cloud 

environments. 

 

Figure 3: Comparison of Anomaly Detection 

Figure 3 compares anomaly detection metrics for AegisHaven, BCALS[36], and Logchain[37], illustrating 

AegisHaven’s superior performance across all metrics. It achieves the highest accuracy, precision, recall, and F1-

score, demonstrating effective classification, minimal false positives, and strong anomaly detection. The results 

highlight AegisHaven’s scalability and reliability, making it highly suitable for dynamic multi-cloud environments. 

5.1.2. Mitigation Efficiency Metrics under Different Conditions 

This section evaluates the Mitigation Efficiency Metrics for the proposed framework (AegisHaven) compared to 

traditional models (BCALS[36] and Logchain[37]) under three different load conditions—Low, Medium, and High. 

Key metrics analyzed include Response Time (ms) and Mitigation Success Rate (%) results are shown in Table 2. 

Table 2. Mitigation Efficiency Metrics 
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Condition Metric Proposed Framework BCALS[36] Logchain[37] 

Low Load Response Time (ms) 120 180 200  
Mitigation Success Rate (%) 98.5 90.2 92.1 

Medium Load Response Time (ms) 150 220 240  
Mitigation Success Rate (%) 97.2 88.5 90.3 

High Load Response Time (ms) 180 260 280  
Mitigation Success Rate (%) 95.8 85.0 87.4 

 
The proposed framework (AegisHaven) consistently outperforms traditional models (BCALS[36] and Logchain[37]) 

across all load conditions. Under low load, it demonstrated the fastest response time (120 ms) and highest success rate 

(98.5%) compared to BCALS[36] (180 ms, 90.2%) and Logchain[37] (200 ms, 92.1%), indicating superior recovery 

speed and accuracy. In medium load scenarios, AegisHaven maintained its scalability with a response time of 150 ms 

and a 97.2% success rate, while BCALS[36] and Logchain[37] exhibited slower responses (220 ms and 240 ms) and 

lower success rates (88.5% and 90.3%). Even under high load, AegisHaven sustained efficiency with a response time 

of 180 ms and a success rate of 95.8%, whereas BCALS[36] and Logchain[37] lagged with response times of 260 ms 

and 280 ms and success rates of 85.0% and 87.4%. These results highlight AegisHaven's ability to handle increased 

workloads effectively while maintaining faster mitigation responses and higher reliability than traditional approaches. 

 

Figure 4: Response Time under Different Load Conditions. 

Figure 4 compares the response times of the proposed framework, BCALS[36], and Logchain[37], highlighting the 

proposed framework's faster mitigation across all load conditions. 
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Figure 5: Mitigation of Success Rate under Different Load Conditions. 

Figure 5 demonstrates the proposed framework's consistently higher success rates compared to BCALS[36] and 

Logchain[37], validating its efficiency and reliability in handling diverse workloads. 

5.1.3. Logging and Auditability Metrics under Different Conditions 

This section evaluates the Logging and Auditability Metrics for the proposed framework (AegisHaven) compared to 

traditional models (BCALS[36] and Logchain[37]) under three different load conditions—Low, Medium, and High. 

Key metrics analyzed include Logging Latency (ms), Storage Requirements (KB), and Audit Compliance Score (out 

of 10) as shown in Table 3. 

Table 3. Logging and Auditability Metrics 

Condition Metric Proposed Framework 

 (AegisHaven's) 

BCALS[36] Logchain[37] 

Low Load Avg Logging Latency (ms) 45 60 70 

 
Avg Storage per Log (KB) 0.4 0.6 0.7 

 
Audit Compliance Score (out of 10) 9.5 8.5 8.0 

Medium Load Avg Logging Latency (ms) 55 75 85 

 
Avg Storage per Log (KB) 0.5 0.7 0.8 

 
Audit Compliance Score (out of 10) 9.0 8.0 7.5 
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High Load Avg Logging Latency (ms) 65 90 100 

 
Avg Storage per Log (KB) 0.6 0.8 0.9 

 
Audit Compliance Score (out of 10) 8.8 7.5 7.0 

 

The proposed framework (AegisHaven) consistently demonstrates superior logging and auditability performance 

compared to traditional models (BCALS[36] and Logchain[37]) across all load conditions. Under low load, 

AegisHaven achieved the lowest logging latency (45 ms), minimal storage overhead (0.4 KB per log), and the highest 

audit compliance score (9.5 out of 10). Both BCALS[36] and Logchain[37] showed higher latencies (60 ms and 70 

ms), larger storage overheads (0.6 KB and 0.7 KB), and lower compliance scores (8.5 and 8.0). In medium and high 

load conditions, AegisHaven maintained its efficiency with logging latencies of 55 ms and 65 ms, while BCALS[36] 

and Logchain[37] displayed slower performance, with latencies reaching 90 ms and 100 ms under high load. Similarly, 

AegisHaven minimized storage overhead and sustained higher audit compliance scores (9.0 and 8.8), surpassing 

BCALS[36] and Logchain[37] in regulatory adherence. These results validate AegisHaven's capability to deliver fast, 

lightweight, and compliant logging, ensuring robust transparency and auditability under varying workloads. 

 

Figure 6: Logging Latency under Different Load Conditions. 

Figure 6 demonstrates the lower latency of the proposed framework compared to BCALS[36] and Logchain[37], 

ensuring faster logging performance as shown in figure 5. 
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Figure 7: Storage Requirements under Different Load Conditions. 

The proposed framework exhibits minimal storage overhead, making it more efficient than BCALS[36] and 

Logchain[37] as shown in figure 7. 

 

Figure 8: Audit Compliance Score under Different Load Conditions. 

The proposed framework maintains higher compliance scores, reflecting its reliability and adherence to regulatory 

standards as shown in figure 8. 

5.1.4. Scalability and Resource Efficiency Metrics 
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The scalability and resource efficiency of the proposed framework, AegisHaven, were assessed to determine its 

performance under varying load conditions. Metrics such as ingestion rate, CPU utilization, and memory usage 

were analyzed to evaluate its ability to handle high-throughput data processing while maintaining computational 

efficiency results are shown in Table 4. 

Table 4. Scalability and Resource Efficiency Results 

Condition Metric Proposed Framework BCALS[36] Logchain[37] 

Low Load Ingestion Rate (entries/sec) 500 350 400 

 
CPU Utilization (%) 25 35 40 

 
Memory Usage (MB) 512 768 850 

Medium Load Ingestion Rate (entries/sec) 800 600 650 

 
CPU Utilization (%) 40 55 60 

 
Memory Usage (MB) 1024 1280 1400 

High Load Ingestion Rate (entries/sec) 1000 750 800 

 
CPU Utilization (%) 55 70 75 

 
Memory Usage (MB) 1536 1792 2048 

 

AegisHaven demonstrated superior scalability and resource efficiency, processing up to 1000 entries/sec under high 

loads, surpassing BCALS[36] (750) and Logchain[37] (800). It maintained lower CPU utilization (55%) and reduced 

memory usage (1536 MB), highlighting its computational efficiency. Additionally, the framework effectively adapted 

to varying workloads, sustaining low latency and consistent resource usage, ensuring reliability in dynamic multi-

cloud environments. These results validate AegisHaven's ability to handle high-performance requirements while 

optimizing resource consumption, making it suitable for large-scale cloud environments. 
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Figure 9: Ingestion Rate under Different Load Conditions. 

Figure 9 illustrates the superior scalability of AegisHaven, which achieves higher ingestion rates compared to 

BCALS[36] and Logchain[37], especially under high loads. 
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Figure 10: CPU Utilization under Different Load Conditions. 

The proposed framework demonstrates lower CPU utilization, reflecting its computational efficiency while 

maintaining high throughput performance from the above figure 10. 

 

Figure 11: Memory Usage under Different Load Conditions. 

AegisHaven exhibits reduced memory consumption, highlighting its resource efficiency compared to BCALS[36] and 

Logchain[37].  From the above figure 11. 

6. Discussion 

6.1 Effectiveness of Anomaly Detection : The proposed framework, AegisHaven, demonstrated exceptional anomaly 

detection capabilities, achieving 96.5% accuracy, 94.7% precision, 93.8% recall, and 94.2% F1-score. The 

integration of advanced machine learning techniques, including Variational Autoencoders (VAEs) and Long Short-

Term Memory (LSTM) networks, enabled the framework to effectively model behavioral and temporal 

dependencies. These methods provided robust performance in identifying zero-day vulnerabilities and anomalies. 

However, while VAEs excel in capturing latent patterns, they may occasionally struggle with highly dynamic 

workloads, leading to minor false positives. Similarly, LSTMs may experience performance degradation under 

extreme data variations, emphasizing the need for continuous model optimization. Despite these limitations, the hybrid 

approach combining reinforcement learning ensures adaptability to evolving threats, positioning AegisHaven as a 

reliable anomaly detection solution. 

6.2 Impact of Automated Mitigation : AegisHaven's automated mitigation mechanisms provided rapid isolation, 

rollback, and self-healing capabilities, ensuring minimal downtime during security incidents. The system achieved 

response times as low as 120 ms and mitigation success rates of up to 98.5%, outperforming traditional 

frameworks. The integration of Deep Q-Networks (DQNs) optimized decision-making, enabling timely 

interventions. The automated response framework reduced manual intervention and human errors, improving 
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operational efficiency. However, potential risks include false positives triggering unnecessary VM isolations or 

rollbacks, which could temporarily impact system availability. Future enhancements, such as adaptive thresholds and 

context-aware mitigation, can further reduce false positives, making the system even more resilient. 

6.3 Role of Blockchain Integration : The integration of blockchain technology in AegisHaven ensured immutable 

logging, providing transparency, auditability, and compliance support. The framework demonstrated logging 

latencies as low as 45 ms and minimal storage overhead (0.4 KB per log), outperforming BCALS[36] and 

Logchain[37]. Blockchain's tamper-proof records enhance regulatory compliance and facilitate forensic 

investigations. However, scaling blockchain for real-time logging poses challenges, especially under high workloads. 

Optimizing consensus mechanisms and exploring lightweight blockchain architectures can help address scalability 

concerns, ensuring seamless performance in large-scale multi-cloud environments. 

6.4 Comparison with Existing Solutions : Compared to traditional frameworks such as BCALS[36] and 

Logchain[37], AegisHaven showcased superior performance across anomaly detection, mitigation efficiency, and 

resource utilization. It achieved higher ingestion rates (1000 entries/sec) with lower CPU (55%) and memory 

usage (1536 MB) under high loads, highlighting its scalability and computational efficiency. Unlike existing 

solutions, which rely on static thresholds and manual interventions, AegisHaven employs adaptive ML models and 

automated mitigation strategies, ensuring dynamic adaptability. Furthermore, the integration of blockchain-based 

logging sets it apart by providing tamper-proof records, enhancing compliance and security audits. These contributions 

establish AegisHaven as a comprehensive and scalable framework for securing dynamic multi-cloud environments. 

7. Conclusion 

The proposed framework, AegisHaven, effectively addresses post-deployment security challenges in dynamic multi-

cloud environments by integrating real-time anomaly detection, automated mitigation, and blockchain-based logging. 

Leveraging advanced machine learning techniques, including Variational Autoencoders (VAEs) and Long Short-Term 

Memory (LSTM) networks, AegisHaven achieved high detection accuracy, precision, and recall, enabling it to identify 

and respond to anomalies, including zero-day vulnerabilities, with minimal false positives. Its automated mitigation 

mechanisms demonstrated rapid response times and high success rates, ensuring timely isolation, rollback, and self-

healing while reducing manual interventions and minimizing downtime. Additionally, the blockchain integration 

provided immutable logs, enhancing transparency, regulatory compliance, and forensic investigations. AegisHaven’s 

superior scalability was evident in its ability to process up to 1000 entries per second with lower CPU utilization and 

reduced memory overhead, outperforming existing frameworks such as BCALS[36] and Logchain[37]. Future work 

will focus on optimizing machine learning models for faster detection and improving adaptability to evolving threats. 

Exploration of alternative blockchain technologies, such as lightweight consensus mechanisms, will aim to reduce 

overhead and improve scalability for real-time logging. Furthermore, expanding compatibility with a broader range 

of cloud providers will ensure interoperability and seamless integration in diverse environments. These enhancements 

will further solidify AegisHaven as a robust, scalable, and efficient security solution for modern multi-cloud 

infrastructures. 
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