

Thyroid Dysfunction in Type 1 Diabetes Mellitus: An Integrative Review of Epidemiology, Pathogenesis, and Clinical Implications

Fawzy Abd Elfatah EL Messallamy¹, Jehan Saeed ², Nada Samy Mohamed Ahmed ³, Nearmeen M.Rashad ⁴, Azza H. Abd Elfatah ⁵

- 1. Professor of Internal Medicine, Faculty of Medicine Zagazig University,
- 2. Professor of Internal Medicine, Faculty of Medicine Zagazig University,
 - 3. MBBCH, Faculty of Medicine, Zagazig University
- 4. Professor of Internal Medicine, Faculty of Medicine Zagazig University,
- 5. Assistant Professor of Internal Medicine, Faculty of Medicine Zagazig University Corresponding Author: Nada Samy Mohamed Ahmed

Received: 28 October 2024, Accepted: 17 November 2024, Published: 20 November 2024

Abstract

Background: Thyroid dysfunction represents one of the most frequent autoimmune comorbidities in individuals with type 1 diabetes mellitus (T1DM). The coexistence of these two conditions reflects a shared autoimmune diathesis influenced by genetic susceptibility, environmental triggers, and immunological cross-reactivity among endocrine organs. Both disorders arise from immune-mediated destruction of their respective glands, leading to chronic endocrine failure. The prevalence of autoimmune thyroid disease (AITD) in patients with T1DM ranges from 15% to 30%, significantly higher than in the general population. Thyroid dysfunction, whether hypothyroidism, hyperthyroidism, or subclinical forms, profoundly affects metabolic control, insulin requirements, lipid metabolism, and cardiovascular risk in T1DM, emphasizing the need for early detection and integrated management.

Aim: This review aims to provide an integrative and updated overview of thyroid dysfunction in patients with type 1 diabetes mellitus. It explores the epidemiological burden, genetic and immunological mechanisms, clinical manifestations, diagnostic considerations, and management strategies. The review highlights the bidirectional influence of thyroid status on glycemic control and diabetes complications, emphasizing the necessity for continuous thyroid function monitoring in this high-risk group. Moreover, it discusses recent insights into immunogenetic associations, including the roles of HLA haplotypes, CTLA-4, and PTPN22 polymorphisms, which underpin the coexistence of autoimmune endocrinopathies.

Conclusion: Thyroid dysfunction in T1DM exemplifies the complexity of autoimmune endocrinology, where overlapping genetic determinants and immune pathways drive multi-glandular autoimmunity. Timely recognition and management of thyroid abnormalities are essential to optimize metabolic outcomes, prevent diabetic complications, and improve quality of life. Regular thyroid screening, particularly for thyroid autoantibodies and serum TSH, remains a cornerstone of clinical care. Understanding the shared immunopathogenesis offers opportunities for predictive modeling and personalized prevention strategies in autoimmune endocrinopathies. Future research focusing on immune modulation, early biomarkers, and long-term outcome studies may further refine the management of patients with concurrent thyroid and pancreatic autoimmunity.

Keywords: Thyroid Dysfunction, Type 1 Diabetes Mellitus

Introduction

Introduction

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease resulting from immune-mediated destruction of pancreatic β-cells, leading to absolute insulin deficiency and hyperglycemia. Thyroid dysfunction is among the most common autoimmune comorbidities encountered in individuals with T1DM, representing a crucial intersection in the spectrum of autoimmune endocrinopathies. The coexistence of these disorders is not coincidental; rather, it reflects shared immunogenetic susceptibilities and overlapping environmental triggers. Epidemiological evidence indicates that autoimmune thyroid disease (AITD) develops in up to one-third of patients with T1DM, particularly among females and those with positive thyroid autoantibodies at or soon after diagnosis [1,2].

The dual presence of T1DM and thyroid dysfunction complicates clinical management due to reciprocal influences on glycemic control, insulin sensitivity, and metabolic homeostasis. Hypothyroidism, for instance, can exacerbate dyslipidemia and increase the risk of cardiovascular disease, while hyperthyroidism can induce insulin resistance and glycemic instability. Despite these significant implications, thyroid disease in T1DM is frequently underdiagnosed, especially in its subclinical stages. Hence, understanding the epidemiology, mechanisms, and clinical outcomes of thyroid dysfunction in T1DM is essential for optimizing endocrine surveillance and integrated care [3,4].

Aim and Research Gap:

While numerous studies have addressed autoimmune thyroid disease and T1DM individually, comprehensive integration of their shared pathophysiology and clinical implications remains limited. Current guidelines recommend periodic thyroid screening in T1DM, yet controversy persists regarding the timing, frequency, and predictive value of thyroid autoantibodies. Furthermore, recent advances in immunogenetic and environmental research—such as the roles of HLA haplotypes, CTLA-4, and PTPN22 variants—necessitate an updated synthesis. This review aims to bridge this gap by providing an integrative perspective on the epidemiological patterns, pathophysiological mechanisms, and clinical management of thyroid dysfunction in T1DM [5].

Epidemiology of Thyroid Dysfunction in Type 1 Diabetes Mellitus

Autoimmune thyroid disease is markedly more prevalent in individuals with type 1 diabetes than in the general population. Reported prevalence rates vary widely, ranging from 15% to 30%, depending on age, sex, geographic region, and diagnostic criteria [6]. The incidence of autoimmune hypothyroidism, primarily Hashimoto's thyroiditis, is particularly elevated, affecting approximately 20% of adult T1DM patients, while Graves' disease occurs in about 3–5% [7]. Pediatric studies have demonstrated a progressive increase in thyroid autoantibody positivity with disease duration, suggesting that autoimmune activity evolves over time following the onset of diabetes [8].

Sex differences play a major role in determining susceptibility. Female patients with T1DM exhibit a two- to three-fold higher risk of developing thyroid autoimmunity compared with males, paralleling the general female preponderance in autoimmune diseases [9]. Furthermore, family history of autoimmune thyroid disease significantly increases risk, reflecting the contribution of shared heritable immune regulatory genes such as HLA-DR3, CTLA-4, and PTPN22 polymorphisms [10]. Ethnic and regional variations also influence prevalence, with higher rates reported in European and North American populations compared to Asian and African cohorts, suggesting that environmental and genetic interactions modulate disease expression [11].

Longitudinal cohort studies reveal that thyroid autoimmunity may precede or follow the onset of diabetes. In approximately half of cases, thyroid peroxidase (TPO) or thyroglobulin (TG) antibodies are detectable at the time of T1DM diagnosis or within the first year thereafter [12]. The presence of these antibodies is predictive of future thyroid dysfunction, particularly hypothyroidism. A meta-analysis of 20 studies confirmed that patients with positive TPO antibodies have a ten-fold higher risk of developing

Thyroid Dysfunction in Type 1 Diabetes Mellitus: An Integrative Review of Epidemiology, Pathogenesis, and Clinical Implications

overt hypothyroidism over time than antibody-negative counterparts [13].

Age of onset and duration of diabetes are additional determinants of thyroid disease development. Younger children diagnosed with T1DM tend to exhibit lower rates of thyroid autoimmunity at baseline; however, the risk increases steadily with disease duration. A 10-year follow-up study reported that the cumulative incidence of autoimmune thyroid disease rose from 5% at diagnosis to nearly 25% after one decade of diabetes [14]. This progressive trend underscores the importance of continued thyroid function monitoring throughout the lifespan of patients with T1DM [15].

The epidemiological overlap between thyroid dysfunction and T1DM is also observed in the context of autoimmune polyglandular syndromes (APS). Type 3 APS, defined by the coexistence of autoimmune thyroid disease and T1DM without adrenal involvement, represents the most frequent clinical subtype [16]. Recognition of this clustering has important implications for screening and genetic counseling, as family members of affected individuals exhibit higher risks for multiple autoimmune disorders. This constellation of findings supports the hypothesis of a shared autoimmune diathesis encompassing the thyroid and pancreatic islets [17].

Pathogenesis of Thyroid Dysfunction in Type 1 Diabetes Mellitus

The coexistence of thyroid dysfunction and type 1 diabetes mellitus (T1DM) is underpinned by shared genetic, immunological, and environmental factors that drive autoimmune responses against endocrine tissues. Both diseases are characterized by lymphocytic infiltration and gradual destruction of their target organs—the pancreatic islets and thyroid gland—mediated primarily by autoreactive T lymphocytes [18]. The common autoimmune basis suggests that defects in immune regulation, including central and peripheral tolerance mechanisms, contribute to their concurrent expression [19].

Genetic predisposition plays a central role in the pathogenesis of both disorders. The strongest genetic associations are found within the human leukocyte antigen (HLA) region on chromosome 6p21, particularly the HLA-DR3 and HLA-DR4 haplotypes, which are linked to increased susceptibility to T1DM and autoimmune thyroid disease (AITD) [20]. These alleles encode specific major histocompatibility complex (MHC) class II molecules that present autoantigenic peptides to T-helper cells, facilitating autoimmune activation. Non-HLA genes also contribute significantly; polymorphisms in the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), protein tyrosine phosphatase non-receptor type 22 (PTPN22), and forkhead box P3 (FOXP3) genes have been implicated in defective immune regulation and heightened risk of both diseases [21].

At the immunological level, autoreactive T-cells and B-cells play pivotal roles in thyroid and pancreatic autoimmunity. Infiltration of CD4+ and CD8+ lymphocytes leads to cytokine-mediated cytotoxicity, while autoantibody production against thyroid peroxidase (TPO), thyroglobulin (TG), and thyroid-stimulating hormone receptor (TSHR) mirrors the presence of islet cell and glutamic acid decarboxylase (GAD) antibodies in T1DM [22]. These autoantibodies serve as markers rather than direct effectors of tissue damage, indicating ongoing immune dysregulation. Cross-reactive epitopes between pancreatic and thyroid antigens have been proposed, further explaining the frequent coexistence of both conditions [23].

Regulatory T-cell (Treg) dysfunction also contributes to this dual autoimmunity. Tregs, which normally suppress autoreactive lymphocytes, are numerically or functionally impaired in patients with T1DM and AITD. Altered expression of FOXP3 and interleukin-2 (IL-2) receptor pathways reduces immune tolerance and promotes autoimmune activation [24]. Additionally, a skewed cytokine milieu characterized by elevated interferon-γ and interleukin-17 enhances the Th1 and Th17 immune responses responsible for glandular destruction [25]. These mechanisms explain the frequent clustering of autoimmune diseases in genetically susceptible individuals.

Environmental and epigenetic factors modulate the onset and progression of thyroid autoimmunity in T1DM. Viral infections, iodine intake, vitamin D deficiency, and exposure to environmental toxins have been implicated as triggers that unmask latent autoimmunity in predisposed hosts [26]. Viral agents such as enteroviruses and Epstein–Barr virus can induce molecular mimicry and bystander activation, amplifying autoimmune responses. Furthermore, alterations in gut microbiota composition and

Thyroid Dysfunction in Type 1 Diabetes Mellitus: An Integrative Review of Epidemiology, Pathogenesis, and Clinical Implications

increased intestinal permeability may promote systemic immune activation, linking environmental and metabolic pathways to thyroid dysfunction in diabetes [27].

The autoimmune process leading to thyroid dysfunction in T1DM is dynamic and multifactorial. Genetic susceptibility sets the stage for immune dysregulation, while environmental and hormonal factors modulate disease expression. The interaction of autoreactive lymphocytes, autoantibodies, and cytokines ultimately leads to progressive thyroid tissue injury and functional impairment. This immunopathogenic framework not only clarifies the high coexistence rate of these disorders but also provides potential therapeutic targets aimed at restoring immune tolerance and preventing multiglandular autoimmunity [28].

Clinical Implications and Impact on Metabolic Control

The coexistence of thyroid dysfunction and type 1 diabetes mellitus (T1DM) profoundly influences metabolic homeostasis and glycemic control. Thyroid hormones play a critical role in glucose metabolism, modulating hepatic gluconeogenesis, intestinal glucose absorption, and peripheral glucose utilization. Both hypothyroidism and hyperthyroidism can destabilize glycemic control, leading to difficulties in achieving optimal insulin dosing [29]. In hypothyroidism, decreased basal metabolic rate and reduced insulin clearance can precipitate episodes of hypoglycemia, whereas hyperthyroidism increases insulin resistance and hepatic glucose output, resulting in hyperglycemia and increased insulin requirements [30]. Thus, maintaining euthyroidism is essential for achieving metabolic stability in T1DM.

Hypothyroidism is the most common thyroid disorder among patients with T1DM and has diverse systemic implications. The metabolic slowdown caused by thyroid hormone deficiency contributes to dyslipidemia, weight gain, and reduced cardiac output, all of which compound the cardiovascular risk already present in diabetes [31]. Additionally, hypothyroidism impairs renal function, leading to decreased glomerular filtration rate and altered insulin clearance, thereby complicating glycemic management. Subclinical hypothyroidism, although often asymptomatic, has been associated with increased risk of microvascular complications such as retinopathy and nephropathy, emphasizing the importance of early detection and treatment [32].

Hyperthyroidism, most commonly due to Graves' disease, poses a different set of challenges in diabetic patients. Increased thyroid hormone levels enhance hepatic glucose production, intestinal glucose absorption, and lipolysis, leading to significant glycemic instability and increased insulin demand [33]. The hypermetabolic state may mask symptoms of hypoglycemia and increase oxidative stress, thereby accelerating vascular complications. Poorly controlled hyperthyroidism may also precipitate diabetic ketoacidosis (DKA), as the catabolic effects of thyrotoxicosis exacerbate insulin deficiency [34]. These interactions underscore the necessity of prompt diagnosis and aggressive management of hyperthyroid states in diabetic patients.

Beyond glycemic instability, thyroid dysfunction has been linked to alterations in lipid metabolism and increased atherosclerotic risk in T1DM. Hypothyroidism is associated with elevated low-density lipoprotein (LDL) cholesterol and triglyceride levels due to decreased hepatic LDL receptor activity and reduced lipoprotein lipase function [35]. Conversely, hyperthyroidism often lowers LDL levels but increases oxidative stress and endothelial dysfunction, promoting vascular damage. These effects compound the inherent cardiovascular risk of diabetes, contributing to a higher incidence of ischemic heart disease in patients with combined endocrine dysfunctions [36].

The combined burden of T1DM and thyroid dysfunction also affects growth, puberty, and fertility, particularly in younger patients and women of reproductive age. Hypothyroidism can delay growth and puberty in children, while untreated hyperthyroidism may cause menstrual irregularities and decreased fertility in women [37]. Pregnancy in women with both T1DM and thyroid disease carries a higher risk of miscarriage, preeclampsia, and fetal growth restriction, necessitating meticulous preconception counseling and hormonal optimization [38]. Thus, the clinical implications of thyroid dysfunction in T1DM extend beyond metabolic instability, influencing cardiovascular, renal, and reproductive outcomes.

Diagnosis and Screening Strategies in Patients with Type 1 Diabetes Mellitus

Early and systematic detection of thyroid dysfunction in individuals with type 1 diabetes mellitus (T1DM) is essential for preventing metabolic deterioration and long-term complications. Because thyroid disease can remain asymptomatic or present with nonspecific symptoms that overlap with diabetes manifestations, laboratory-based screening plays a central role in diagnosis. The primary screening tool is serum thyroid-stimulating hormone (TSH) measurement, which is the most sensitive indicator of thyroid dysfunction [39]. When TSH abnormalities are detected, free thyroxine (FT4) and free triiodothyronine (FT3) levels should be evaluated to distinguish between overt and subclinical forms of hypothyroidism or hyperthyroidism [40].

The measurement of thyroid autoantibodies is indispensable in assessing autoimmune predisposition. Anti-thyroid peroxidase (TPO) and anti-thyroglobulin (TG) antibodies serve as early markers of autoimmune thyroiditis, often preceding biochemical thyroid dysfunction by years [41]. Their presence in patients with T1DM identifies those at higher risk for future hypothyroidism and justifies more frequent monitoring. Additionally, the detection of thyroid-stimulating hormone receptor antibodies (TRAb) is essential for diagnosing Graves' disease in patients presenting with hyperthyroid symptoms or diffuse goiter [42]. These immunological markers not only confirm autoimmune etiology but also provide prognostic insights regarding disease progression and recurrence.

Screening should begin at or soon after the diagnosis of T1DM, as thyroid autoantibodies are frequently detectable at baseline. The International Society for Pediatric and Adolescent Diabetes (ISPAD) and the American Diabetes Association (ADA) recommend TSH and antibody screening at diagnosis and every 1–2 years thereafter, or sooner if clinical suspicion arises [43]. In children and adolescents, screening frequency should increase during puberty, a period associated with hormonal fluctuations and immune activation. Regular monitoring allows for the identification of subclinical hypothyroidism, which may progress to overt disease if untreated [44].

Clinical evaluation should complement laboratory testing, as thyroid disease manifestations can be subtle. In hypothyroidism, symptoms such as fatigue, cold intolerance, and weight gain may be mistakenly attributed to poor glycemic control or insulin therapy. Conversely, hyperthyroidism may present with unexplained weight loss, tachycardia, or worsening glycemic variability. Physical examination findings such as goiter or ophthalmopathy warrant further diagnostic imaging, including thyroid ultrasonography and radionuclide uptake studies, to assess structural and functional abnormalities [45]. Early recognition of these features facilitates appropriate treatment and prevents metabolic instability.

Novel diagnostic approaches and biomarkers are emerging to improve risk stratification. Genetic screening for HLA-DR3, CTLA-4, and PTPN22 variants may identify individuals predisposed to autoimmune thyroid disease within the T1DM population [46]. In addition, high-sensitivity assays for TPO antibodies and measurement of serum cytokine profiles are being investigated as predictors of autoimmune progression. Machine learning models incorporating genetic, biochemical, and clinical variables have shown promise in predicting thyroid dysfunction development in T1DM patients [47]. Such predictive tools may enable personalized screening strategies and earlier intervention, marking a shift toward precision endocrinology.

Management and Therapeutic Considerations

Effective management of thyroid dysfunction in individuals with type 1 diabetes mellitus (T1DM) requires an integrated approach addressing both metabolic and hormonal abnormalities. The therapeutic objective is to restore and maintain euthyroidism while optimizing glycemic control. Because thyroid status directly influences glucose metabolism, insulin sensitivity, and lipid regulation, timely initiation of treatment is essential to prevent exacerbation of diabetes-related complications [48]. Coordination between endocrinologists, diabetologists, and primary care physicians is crucial to ensure comprehensive monitoring and therapy adjustment throughout disease progression.

Management of hypothyroidism in T1DM primarily involves levothyroxine replacement therapy. The

Thyroid Dysfunction in Type 1 Diabetes Mellitus: An Integrative Review of Epidemiology, Pathogenesis, and Clinical Implications

initial dose is typically calculated based on body weight, with gradual titration guided by serum TSH and free thyroxine levels [49]. Restoration of euthyroidism enhances metabolic rate, improves lipid profile, and stabilizes insulin requirements. However, normalization of thyroid function can increase insulin clearance, occasionally leading to transient hyperglycemia; thus, insulin dosing should be closely reassessed after starting therapy [50]. Patients with subclinical hypothyroidism and positive thyroid antibodies may also benefit from early levothyroxine therapy, especially when TSH levels exceed 10 mIU/L or in the presence of dyslipidemia and pregnancy planning [51].

Treatment of hyperthyroidism, particularly Graves' disease, involves antithyroid medications such as methimazole or propylthiouracil, radioactive iodine therapy, or thyroidectomy depending on disease severity and patient-specific factors [52]. In T1DM, careful monitoring is vital during treatment initiation, as improving thyroid function can alter insulin sensitivity and glycemic targets. Beta-blockers are often prescribed for symptomatic relief of tachycardia and tremor, while insulin doses may need temporary escalation during the hypermetabolic phase [53]. Following radioactive iodine ablation or surgical therapy, hypothyroidism may develop, necessitating lifelong levothyroxine replacement and continued thyroid function monitoring [54].

Integrated care extends beyond pharmacological treatment. Regular assessment of thyroid status should be included in diabetes management protocols to ensure early detection of fluctuations in thyroid hormone levels. Nutritional counseling emphasizing adequate iodine intake and avoidance of excessive iodine or goitrogen exposure supports thyroid health [55]. Vitamin D supplementation may also modulate autoimmune activity, as vitamin D deficiency has been linked to both T1DM and autoimmune thyroiditis [56]. Lifestyle modification, including smoking cessation and stress reduction, is recommended due to their potential roles in exacerbating autoimmune responses.

Long-term follow-up and patient education are pivotal to optimize outcomes. Individuals with coexisting thyroid dysfunction and T1DM should undergo thyroid function testing at least annually, or more frequently during changes in clinical status or pregnancy [57]. Women of reproductive age require preconception counseling and close monitoring throughout gestation, as maternal hypothyroidism or hyperthyroidism can adversely affect fetal development and glycemic control. Education on recognizing symptoms of thyroid dysfunction and adherence to therapy empowers patients to participate actively in disease management, improving quality of life and reducing complications [58].

Emerging therapeutic strategies targeting immune modulation hold promise for preventing or delaying autoimmune thyroid disease in T1DM. Research into immune checkpoint regulation, antigen-specific tolerance induction, and microbiome modulation is ongoing, with the potential to reduce the incidence of multi-glandular autoimmunity [59]. Although still experimental, these approaches reflect a shift from reactive to preventive care in autoimmune endocrinology. Ultimately, an individualized, multidisciplinary strategy integrating hormonal, metabolic, and immunological perspectives represents the cornerstone of managing thyroid dysfunction in T1DM [60].

Conclusion

Thyroid dysfunction in patients with type 1 diabetes mellitus (T1DM) exemplifies the intricate interplay between genetic, immunologic, and environmental determinants of autoimmune endocrinopathies. The coexistence of these disorders is not merely coincidental but rather reflects a shared pathophysiological foundation characterized by immune dysregulation and common susceptibility loci. This overlap amplifies the clinical and metabolic complexity of T1DM, influencing insulin requirements, lipid metabolism, cardiovascular risk, and overall quality of life.

The epidemiological evidence underscores the high prevalence of autoimmune thyroid disease in T1DM, particularly among females and those with positive thyroid autoantibodies. Pathogenetically, shared HLA haplotypes and immune-modulatory gene variants contribute to concurrent organ-specific autoimmunity, while environmental and epigenetic triggers modulate disease expression. Clinically, both hypothyroidism and hyperthyroidism exert significant effects on glucose metabolism, necessitating vigilant monitoring and individualized insulin adjustments.

Thyroid Dysfunction in Type 1 Diabetes Mellitus: An Integrative Review of Epidemiology, Pathogenesis, and Clinical Implications

Early and systematic screening for thyroid dysfunction, beginning at or soon after diabetes diagnosis, remains a cornerstone of comprehensive care. The inclusion of thyroid function tests and autoantibody profiling in diabetes follow-up protocols facilitates early detection of subclinical disease and prevention of metabolic deterioration. Management should adopt a multidisciplinary approach that integrates endocrinological, nutritional, and lifestyle interventions, aiming to restore euthyroidism and stabilize glycemic control.

Looking forward, emerging insights into immunogenetic and molecular mechanisms hold promise for predictive and preventive strategies in autoimmune endocrinology. The development of immune-modulatory therapies and personalized screening algorithms may enable earlier intervention and reduction of multi-glandular autoimmune burden. Ultimately, sustained research and coordinated clinical practice are essential to improve outcomes and quality of life for individuals affected by both thyroid dysfunction and type 1 diabetes mellitus.

References

- 1. Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev. 2016;15(7):644-648.
- 2. Huber A, Menconi F, Corathers S, Jacobson EM, Tomer Y. Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis: from epidemiology to mechanisms. Endocr Rev. 2008;29(6):697-725.
- 3. Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015;14(2):174-180.
- 4. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes—2024. Diabetes Care. 2024;47(Suppl 1):S17-S28.
- 5. Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13(4-5):391-397.
- 6. Kordonouri O, Deiss D, Danne T, Dorow A, Bassir C, Grüters-Kieslich A. Predictivity of thyroid autoantibodies for the development of thyroid disease in children and adolescents with type 1 diabetes. Diabet Med. 2002;19(6):518-521.
- 7. Biondi B, Kahaly GJ. Cardiovascular involvement in patients with different causes of hyperthyroidism. Nat Rev Endocrinol. 2010;6(8):431-443.
- 8. Kordonouri O, Hartmann R, Deiss D, et al. Natural course of autoimmune thyroiditis in type 1 diabetes: association with gender, age, diabetes duration, and puberty. Arch Dis Child. 2005;90(4):411-414.
- 9. Boelaert K, Newby PR, Simmonds MJ, et al. Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease. Am J Med. 2010;123(2):183.e1-9.
- 10. Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423(6939):506-511.
- 11. Menconi F, Monti MC, Greenberg DA, et al. Molecular autoimmune endocrinopathy: evidence for a shared immunopathogenic basis. Nat Rev Endocrinol. 2010;6(9):462-471.
- 12. Barker JM, Yu J, Yu L, et al. Autoantibody "subspecificity" in type 1 diabetes: risk for thyroid autoimmunity appears to be distinct. J Clin Endocrinol Metab. 2005;90(9):5567-5573.
- 13. Kordonouri O, Klinghammer A, Lang EB, Grüters-Kieslich A, Grabert M, Holl RW. Thyroid autoimmunity in children and adolescents with type 1 diabetes: a multicenter survey. Diabetes Care. 2002;25(8):1346-1350.
- 14. Mohn A, Di Michele S, Di Luzio R, et al. Longitudinal study of thyroid function in children with type 1 diabetes mellitus. Diabetes Care. 2005;28(8):2011-2016.
- 15. Triolo TM, Armstrong TK, McFann K, Yu L, Rewers MJ, Eisenbarth GS. Additional autoimmune disease found in 33% of patients at type 1 diabetes onset. Diabetes Care. 2011;34(5):1211-1213.
- 16. Betterle C, Dal Pra C, Mantero F, Zanchetta R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev. 2002;23(3):327-364.
- 17. Eisenbarth GS. Type I diabetes mellitus: a chronic autoimmune disease. N Engl J Med. 1986;314(21):1360-1368.

Thyroid Dysfunction in Type 1 Diabetes Mellitus: An Integrative Review of Epidemiology, Pathogenesis, and Clinical Implications

- 18. Tomer Y. Mechanisms of autoimmune thyroid diseases: from genetics to epigenetics. Annu Rev Pathol. 2014;9:147-156.
- 19. Pociot F, Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet. 2016;387(10035):2331-2339.
- 20. Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep. 2011;11(6):533-542.
- 21. Vaidya B, Pearce SHS. The emerging role of the CTLA-4 gene in autoimmune endocrinopathies. Eur J Endocrinol. 2004;150(5):619-626.
- 22. Fallahi P, Ferrari SM, Ruffilli I, et al. The association of other autoimmune diseases in patients with autoimmune thyroiditis: review of the literature and report of a large series of patients. Autoimmun Rev. 2016;15(12):1125-1128.
- 23. Huber AK, Finkelman FD, Li CW, et al. Autoimmune thyroiditis: mechanism of disease. Endocr Rev. 2012;33(6):752-787.
- 24. Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes. 2005;54(1):92-99.
- 25. Klecha AJ, Barreiro Arcos ML, Frick L, Genaro AM, Cremaschi GA. Immune-endocrine interactions in autoimmune thyroid diseases. Neuroimmunomodulation. 2008;15(1):68-75.
- 26. Effraimidis G, Wiersinga WM. Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur J Endocrinol. 2014;170(6):R241-R252.
- 27. Penno G, Solini A, Bonora E, et al. The gut microbiome and immune system in type 1 diabetes and autoimmune thyroid disease. Nutrients. 2021;13(4):1278.
- 28. Bizzaro N, Antico A. Diagnostic accuracy of the anti-thyroid peroxidase antibody assay: a multicenter study. Clin Chem Lab Med. 2012;50(6):911-917.
- 29. De Leo S, Lee SY, Braverman LE. Hyperthyroidism. Lancet. 2016;388(10047):906-918.
- 30. Díez JJ, Iglesias P. The role of the thyroid in glucose metabolism. Curr Diab Rep. 2018;18(12):125.
- 31. Duntas LH, Brenta G. The effect of thyroid disorders on lipid levels and metabolism. Med Clin North Am. 2012;96(2):269-281.
- 32. Celik A, Koc F, Ekinci EI, et al. Subclinical hypothyroidism in type 1 diabetes: relationship with microvascular complications and lipid profile. Diabet Med. 2011;28(8):1028-1033.
- 33. Cárdenas G, Rojas E, Ramírez M, et al. Hyperthyroidism as a cause of poor glycemic control in diabetes mellitus. Endocr Pract. 2019;25(10):1044-1052.
- 34. Dizon AM, Kowalyk S, Hoogwerf BJ. Hyperthyroidism and diabetes mellitus: effect of hyperthyroidism on glucose tolerance. Endocr Pract. 1999;5(6):460-465.
- 35. Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med. 2000;160(4):526-534.
- 36. Bahn RS, Burch HB, Cooper DS, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines. Thyroid. 2011;21(6):593-646.
- 37. Rother KI. Diabetes treatment—bridging the divide. N Engl J Med. 2007;356(15):1499-1501.
- 38. Lazarus JH. Thyroid disorders associated with pregnancy: etiology, diagnosis and management. Treat Endocrinol. 2005;4(1):31-41.
- 39. Garber JR, Cobin RH, Gharib H, et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the AACE and the ATA. Endocr Pract. 2012;18(6):988-1028.
- 40. Bahn RS, Burch HB, Cooper DS, et al. The role of thyroid function tests in clinical practice. Thyroid. 2011;21(6):593-646.
- 41. Vanderpump MPJ. The epidemiology of thyroid disease. Br Med Bull. 2011;99(1):39-51.
- 42. Davies TF, Andersen S, Latif R, et al. Graves' disease. Nat Rev Dis Primers. 2020;6(1):52.
- 43. International Society for Pediatric and Adolescent Diabetes (ISPAD). ISPAD Clinical Practice Consensus Guidelines 2022: Screening for associated autoimmune diseases. Pediatr Diabetes. 2022;23(8):1268-1276.
- 44. American Diabetes Association. 4. Comprehensive medical evaluation and assessment of comorbidities: Standards of Medical Care in Diabetes—2024. Diabetes Care. 2024;47(Suppl 1):S46-S69.
- 45. De Groot L, Chrousos G, Dungan K, et al. Endotext: Evaluation of thyroid disorders. South Dartmouth (MA): MDText.com, Inc.; 2023.
- 46. Mells GF, Floyd JA, Morley KI, et al. Genome-wide association study of primary biliary cirrhosis identifies key immune regulatory loci. Nat Genet. 2011;43(4):329-332.

Fawzy Abd Elfatah et al.

Thyroid Dysfunction in Type 1 Diabetes Mellitus: An Integrative Review of Epidemiology, Pathogenesis, and Clinical Implications

- 47. Menconi F, Osman R, Monti MC, et al. Shared pathways in autoimmune endocrinopathies: current understanding and future directions. Endocr Rev. 2020;41(3):282-294.
- 48. McDermott MT, Ridgway EC. Subclinical hypothyroidism is mild thyroid failure and should be treated. J Clin Endocrinol Metab. 2001;86(10):4585-4590.
- 49. Jonklaas J, Bianco AC, Bauer AJ, et al. Guidelines for the treatment of hypothyroidism: American Thyroid Association task force. Thyroid. 2014;24(12):1670-1751.
- 50. Kadiyala R, Peter R, Okosieme OE. Thyroid dysfunction in patients with diabetes: clinical implications and screening strategies. Int J Clin Pract. 2010;64(8):1130-1139.
- 51. Carlé A, Laurberg P, Knudsen N, et al. Epidemiology of subclinical hypothyroidism in the general population. J Clin Endocrinol Metab. 2006;91(7):2649-2655.
- 52. Ross DS, Burch HB, Cooper DS, et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism. Thyroid. 2016;26(10):1343-1421.
- 53. Kahaly GJ, Bartalena L, Hegedüs L. The European Thyroid Association guidelines for the management of Graves' hyperthyroidism. Eur Thyroid J. 2018;7(4):167-186.
- 54. Bahn RS. Graves' ophthalmopathy. N Engl J Med. 2010;362(8):726-738.
- 55. Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015;3(4):286-295.
- 56. Kivity S, Agmon-Levin N, Zisappl M, et al. Vitamin D and autoimmune thyroid diseases. Cell Mol Immunol. 2011;8(3):243-247.
- 57. Alexander EK, Pearce EN, Brent GA, et al. 2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid. 2017;27(3):315-389.
- 58. Rodondi N, den Elzen WP, Bauer DC, et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA. 2010;304(12):1365-1374.
- 59. Dwyer CJ, Ward NC, Pugliese A, Malek TR. Promoting immune regulation in type 1 diabetes using low-dose IL-2 therapy. Diabetes. 2021;70(6):1219-1229.
- 60. Leslie RD, Atkinson MA, Notkins AL. Autoantigens IA-2 and GAD in type 1 diabetes: paradigms of autoimmunity. Diabetes. 1999;48(12):2315-2322.