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Abstract- The increasing complexity of cloud computing environments necessitates robust, 

automated monitoring systems to ensure high availability and operational efficiency. Traditional 

manual anomaly detection methods are no longer sufficient due to their limited scalability, high 

error rates, and delayed response times. This research proposes a machine learning-based anomaly 

detection system designed to proactively monitor cloud operations by analyzing real-time streams 

of logs, system metrics, and performance indicators. The system ingests diverse data sources 

including timestamped logs, CPU and memory utilization, network traffic, response times, and 

error rates, each tagged with unique resource identifiers. It leverages both labeled and unlabelled 

datasets for comprehensive model training and evaluation. A hybrid approach is adopted using 

supervised algorithms—Support Vector Machine (SVM), Random Forest, Deep Neural Network 

(DNN), and Extreme Gradient Boosting (XGBoost). SVM achieves 97% accuracy on labeled 

historical data, while DNN reaches 99.2% by modeling complex nonlinear patterns, and XGBoost 

achieves 98.8% by optimizing performance through gradient boosting on decision trees. Notably, 

Random Forest attains 100% accuracy across both labeled and unlabelled scenarios, demonstrating 

exceptional generalization through ensemble learning. Detected anomalies are classified by 

severity and type, with each assigned a confidence score to guide timely responses—either 

automated or manual. This intelligent framework substantially enhances anomaly detection 

accuracy, minimizes false positives, and supports resilient cloud operations. Its modular, scalable 

architecture ensures compatibility with existing cloud infrastructures. Future enhancements will 

focus on real-time adaptability, cross-cloud deployment, and integration with predictive analytics 

and self-healing protocols to enable autonomous cloud management. 
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Introduction 

The widespread adoption of cloud computing has revolutionized the way businesses manage their 

operations, offering unprecedented scalability, flexibility, and cost-efficiency [1]. However, with 

this rapid expansion comes the challenge of ensuring the reliability and security of cloud-based 

systems [2]. One critical aspect of this challenge is the detection and mitigation of anomalies within 

cloud operations [3]. 

 

Traditional methods of anomaly detection often fall short in the context of cloud environments. 

These methods typically lack automation, are labor-intensive, and are susceptible to errors [4]. As 

a result, there is a growing need for automated anomaly detection systems that can effectively 

monitor cloud operations in real-time, identifying deviations from normal behavior and alerting 

stakeholders promptly [5]. The system integrates a diverse range of data sources, including 

timestamped log entries, CPU utilization, network traffic, response times, and error rates [6]. Each 

data point is associated with unique identifiers and types, providing a comprehensive view of cloud 

operations. Anomalies detected by the system are categorized based on severity and type, 

accompanied by detailed descriptions and confidence scores generated by the detection algorithm 
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[7]. This allows stakeholders to prioritize and respond to anomalies effectively [8]. To achieve 

high accuracy in anomaly detection, the system employs a hybrid approach, combining supervised 

and unsupervised machine learning techniques. Support Vector Machine (SVM) is utilized for 

supervised learning, achieving 97% accuracy when trained on labeled historical data [9]. On the 

other hand, the Isolation Forest algorithm is employed for unsupervised learning, achieving 100% 

accuracy on unlabelled data [10]. Choosing suitable methods and features for the automated 

anomaly detection system within cloud operations is paramount for its efficacy and adaptability 

[11]. Deep Neural Network (DNN), and Extreme Gradient Boosting (XGBoost)—alongside the 

unsupervised Isolation Forest. SVM achieves 97% accuracy on labeled historical data, Random 

Forest attains 98.5% through ensemble learning, DNN reaches 99.2% by modeling complex 

nonlinear patterns, and XGBoost achieves 98.8% by optimizing performance through gradient 

boosting on decision trees. Within the dynamic landscape of cloud environments, meticulous 

consideration is essential to ensure that the selected methods and features adeptly capture 

anomalies while minimizing false positives and adjusting to evolving conditions [12]. Feature 

selection involves considerations such as the relevance of features to cloud operations, 

dimensionality reduction techniques like Principal Component Analysis (PCA) to manage 

complexity, incorporation of time-based features for temporal analysis, capturing 

interrelationships through cross-correlation analysis, and ensuring robustness and scalability [13]. 

Method selection encompasses strategies like supervised and unsupervised learning techniques, 

hybrid approaches combining both, ensemble methods for improved performance, online learning 

for real-time adaptation, and models emphasizing interpretability and explainability [14]. By 

meticulously aligning methods and features, the automated anomaly detection system can 

effectively monitor cloud operations, detect deviations from normal behavior, and mitigate risks, 

thus ensuring operational reliability and security in dynamic cloud environments [15]. 

By utilizing machine learning algorithms and tapping into a wide range of data sources, this 

automated anomaly detection system takes a proactive stance in managing cloud operations, 

dealing with a substantial dataset adeptly [16]. Its capacity to swiftly and accurately pinpoint 

anomalies in real-time enhances operational reliability and security, establishing a solid foundation 

for streamlined management of cloud infrastructure amidst ever-evolving threats and obstacles 

[17]. Through careful alignment of methods and features, this system guarantees effective 

surveillance of cloud operations, prompt identification of deviations from the norm, and mitigation 

of potential risks. 

 

1.  Literature Review 

Anomaly detection in cloud computing has gained significant attention due to its crucial role in 

maintaining system reliability, security, and performance. Various methodologies have been 

explored, ranging from traditional statistical models to advanced deep learning techniques. Table 

1 provides a concise comparative summary of key literature on anomaly detection in cloud 

systems, highlighting each study’s contributions, limitations, and potential future directions. This 

structured overview helps identify research gaps and guides the development of more robust, 

scalable, and interpretable detection frameworks. 
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Table 1. A Comparative Analysis of Anomaly Detection Techniques in Cloud Computing: 

Insights, Challenges, and Opportunities 

Author(s) Year Focus Area Key Contribution Limitations Future Directions 

Farshchi et 

al. 

2018 Metric-log 

correlation 

Demonstrated 

improved 

anomaly 

detection via 

metric-log 

analysis in cloud 

systems 

Limited 

scalability in 

highly dynamic 

cloud 

environments 

Develop adaptive 

correlation 

models for real-

time cloud 

monitoring 

Farshchi et 

al. 

2015 Experience 

report 

Highlighted need 

for automated 

detection using 

log and metric 

correlations 

Relied on manual 

rule tuning and 

lacked real-time 

response 

Automate 

correlation rule 

generation using 

machine learning 

Chen et al. 2021 Deep learning 

for logs 

Used neural 

networks to 

efficiently 

identify 

anomalies in 

system logs 

Required large 

labeled datasets; 

interpretability 

was limited 

Explore 

explainable DL 

models and 

unsupervised 

learning for log 

data 

Islam et al. 2021 Large-scale 

cloud platforms 

Employed 

multiple models 

to improve cloud 

operational 

reliability 

Models may not 

generalize across 

different cloud 

architectures 

Design transfer 

learning 

frameworks for 

cross-platform 

anomaly 

detection 

Bhanage et 

al. 

2021 Systematic 

review 

Reviewed 

datasets, 

preprocessing, 

and ML 

techniques; 

emphasized log 

preprocessing 

Review lacked 

experimental 

benchmarking of 

methods 

Build benchmark 

datasets and 

standardize 

preprocessing 

pipelines 

Catillo et al. 2022 Autoencoder-

based detection 

Proposed 

AutoLog using 

deep 

autoencoding for 

detecting rare log 

anomalies 

Performance 

drops with highly 

noisy or 

incomplete logs 

Integrate noise-

robust encoding 

schemes and 

anomaly 

localization 

modules 

He et al. 2020 Spatiotemporal 

deep learning 

Used 

unsupervised 

models to detect 

anomalies 

without labeled 

data 

High 

computational 

cost and difficult 

to interpret 

Optimize model 

architecture and 

incorporate 

explainability 

mechanisms 
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Mitropoulou 

et al. 

2024 Hybrid ML and 

knowledge 

graphs 

Developed a 

framework 

integrating 

knowledge 

graphs and ML 

Graph 

construction can 

be complex and 

data-intensive 

Automate 

knowledge graph 

generation and 

expand to multi-

cloud 

environments 

El-Kassabi 

et al. 

2023 Cloud security 

and 

orchestration 

Applied DL to 

detect attacks in 

orchestrated 

workflows 

Focused mainly 

on security; 

general anomaly 

types were 

underexplored 

Extend to cover 

diverse anomaly 

types and 

integrate with 

real-time 

orchestration 

tools 

Rajapaksha 

et al. 

2022 E-payment 

anomaly 

detection 

Explored ML-

based fraud 

detection in 

cloud-hosted 

payment systems 

Domain-specific; 

may not transfer 

to other financial 

or cloud systems 

Develop modular 

frameworks 

applicable across 

domains 

Dodda et al. 2024 Microservice 

reliability 

Applied ML to 

enhance 

microservice 

reliability in 

cloud 

environments 

Data imbalance 

and model drift 

were not fully 

addressed 

Incorporate 

online learning 

and continuous 

model updates 

Hrusto et al. 2022 Feedback-

enhanced 

detection 

Proposed 

continuous 

feedback for real-

time anomaly 

detection 

Feedback loops 

may introduce 

delays or false 

alarms 

Develop 

reinforcement 

learning for 

feedback 

adaptation and 

mitigation 

 

Meanwhile, Rousopoulou et al. (2022) developed a cognitive analytics platform that integrates AI-

based anomaly detection solutions, demonstrating the benefits of incorporating cognitive 

computing in cloud environments. In industrial applications, Jaramillo-Alcazar et al. (2023) 

explored anomaly detection in smart industrial machinery using IoT and machine learning 

techniques, underlining the significance of real-time predictive analytics. Zhang et al. (2019) 

addressed the challenge of unstable log data by introducing a robust log-based anomaly detection 

model, which enhances detection reliability under dynamic cloud conditions. Xin et al. (2023) 

proposed an ensemble learning-based framework for robust and accurate anomaly detection in 

cloud applications, achieving notable improvements in prediction accuracy. Lastly, Al-Amri et al. 

(2021) reviewed machine learning and deep learning approaches for anomaly detection in IoT data, 

providing a comprehensive analysis of various techniques and their applicability in different 

scenarios. 

 

Overall, the literature highlights the evolution of anomaly detection methods in cloud computing, 

with deep learning and hybrid models emerging as dominant approaches. The integration of 
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cognitive computing, ensemble learning, and real-time feedback mechanisms has further refined 

anomaly detection capabilities, enhancing cloud security and performance. The literature review 

reinforced these points by discussing various studies that have explored log-based anomaly 

detection, deep learning models, and machine learning-driven approaches. While the introduction 

provided a broad overview, the literature review detailed specific methodologies and findings, 

showcasing how different techniques address cloud system anomalies. The comparison highlights 

a growing shift toward integrating AI-driven models and ensemble techniques to improve anomaly 

detection, validating the core premise presented in the introduction. 

 

2. Material and Methods 

3.1 Dataset for Automated Anomaly Detection 

This structured dataset facilitates the training and evaluation of machine learning models, 

including Isolation Forest and One-Class SVM, to enable precise, real-time anomaly detection, 

ensuring the performance, security, and reliability of cloud operations. The dataset for the 

Automated Anomaly Detection System, as outlined in Table 2, consists of 1001 key attributes, 

encompassing timestamps, log data, metrics data, performance data, resource identifiers, resource 

types, severity levels, anomaly classifications, descriptions, confidence scores, alert statuses, 

response actions, and additional metadata. 

 

Timestamps capture data collection times, while log data records raw events from cloud services. 

Metrics data includes key performance indicators such as CPU and memory usage, while 

performance data details response times and error rates. Resource identifiers and types help 

classify and track cloud resources. Severity levels rank anomalies by priority, while anomaly 

classifications and descriptions provide insight into detected issues. Confidence scores reflect the 

certainty of anomaly detection, and alert statuses indicate whether alerts have been triggered. 

Actions taken document the responses to anomalies, with additional metadata providing further 

context. 

Table 2. Dataset for Automated Anomaly Detection in Cloud Operations 

Attribute  Description 

Timestamp The date and time when the data was collected. 

Log Data Raw log entries collected from various cloud services and 

applications. 

Metrics Data Performance metrics such as CPU utilization, memory usage, 

network traffic, etc. 

Performance Data Detailed performance data including response times, throughput, 

error rates, etc. 

Resource ID Unique identifier for the cloud resource being monitored (e.g., 

instance ID, container ID). 

Resource Type Type of cloud resource (e.g., virtual machine, database instance, 

container). 

Severity Severity level of the anomaly detected (e.g., critical, major, minor). 

Anomaly Type Type of anomaly detected (e.g., spike in CPU usage, sudden increase 

in error rates). 

Anomaly 

Description 

A brief description of the anomaly detected, providing context for 

further investigation. 
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Confidence Score Confidence level of the anomaly detection algorithm in its 

assessment of the anomaly. 

Alert Status Indicates whether an alert has been triggered for this anomaly (e.g., 

true/false, yes/no). 

Action Taken Description of any automated or manual action taken in response to 

the detected anomaly. 

Additional 

Metadata 

Any additional metadata associated with the data (e.g., source, tags, 

labels). 

 

The dataset empowers the Automated Anomaly Detection System for Cloud Operations by 

supplying critical data, including timestamps, logs, metrics, and performance records. It enables 

machine learning models to recognize patterns, detect anomalies, identify issues in specific 

resources, and prioritize responses based on severity and confidence scores, ensuring accurate, 

real-time anomaly detection that enhances the reliability, security, and performance of cloud 

operations. 

 

The dataset entries, illustrated in Figure 1, originate from an Automated Anomaly Detection 

System that continuously analyzes logs, metrics, and performance data using machine learning. 

Each entry is linked to a specific timestamp, such as "2024-06-25 10:00:00," allowing for time-

series analysis and event correlation. "Log Data" (e.g., [Log entry 1, Log entry 2, ...]) provides 

contextual insights into events leading to the anomaly. "Metrics Data," including resource usage 

indicators like {"CPU": 85%, "Memory": 60%, "Disk": 75%}, helps identify abnormal utilization 

patterns. "Performance Data," detailing metrics such as {"Response Time": 500ms, "Throughput": 

1000req/s}, offers a deeper understanding of cloud system performance. 

 

Attributes like "Resource ID" (e.g., i-1234567890) and "Resource Type" (e.g., VM) specify the 

affected resource. "Severity" (e.g., High) indicates the level of impact, while "Anomaly Type" 

(e.g., CPU Utilization) categorizes the detected issue. "Anomaly Description" (e.g., Sudden spike 

in CPU usage observed) provides a concise problem summary. The "Confidence Score" (e.g., 0.85) 

measures detection certainty, and "Alert Status" (e.g., true) signals whether the system has flagged 

the anomaly. "Action Taken" (e.g., Investigating) logs the response, ensuring traceability of 

remediation efforts. Finally, "Additional Metadata" (e.g., {"Source": "CloudWatch", "Region": 

"us-west-2"}) provides further context, such as data source and resource location.  
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      Figure 1. Real Time Dataset used for Anomaly Detection in Cloud by using Operations 

Utilizing Continuous Analysis of Logs, Metrics, and Performance Data. 

 

These entries demonstrate how the dataset effectively captures crucial details about anomalies, 

facilitating their identification, analysis, and resolution through both automated and manual 

interventions. For instance, an entry might indicate high CPU utilization with a confidence score of 

0.85, triggering an investigation and being documented with metadata that specifies the data source 

and region. 

 

3.2 Features and Methods Selection for Anomaly Detection and Machine Learning 

The choice of methods and features for the automated anomaly detection system plays a vital role in 

ensuring its effectiveness in cloud operations. Selecting features that accurately represent resource 

utilization, network traffic, and error rates is essential to capturing key aspects of cloud performance. 

 

Table 3. Features and Methods Selection. 

Criteria Feature Selection Method Selection 

Relevance Choose features reflecting resource 

utilization, network traffic, error rates, 

etc. 

Utilize supervised (e.g., SVM) and 

unsupervised (e.g., Isolation 

Forest) methods for anomaly 

detection. 

Dimensionality 

Reduction 

Employ techniques like PCA for 

reducing computational complexity 

while retaining informative features. 

Utilize ensemble methods (e.g., 

Random Forests) for improved 

robustness and generalization. 
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Temporal 

Aspects 

Include time-based features capturing 

trends, periodicity, and temporal 

dependencies in data. 

Combine supervised and 

unsupervised methods for a 

balanced approach to anomaly 

detection. 

Cross-

Correlation 

Analysis 

Incorporate features capturing 

interrelationships between different 

metrics for a comprehensive view of 

system behaviour. 

Prioritize algorithms supporting 

online learning for real-time 

adaptation to dynamic cloud 

environments. 

Robustness and 

Scalability 

Ensure selected features are robust to 

workload changes and scalable for 

processing large-scale cloud data. 

Choose interpretable models (e.g., 

decision trees) for transparency 

and understanding of detection 

results. 

 

Techniques such as Principal Component Analysis (PCA) help reduce computational complexity 

while preserving essential information, while time-based features account for trends, periodicity, 

and temporal dependencies, as shown in Table 3. Additionally, selecting features that capture 

interdependencies between different metrics provides a comprehensive view of system behavior, 

ensuring adaptability to workload variations and scalability for large-scale data processing. 

 

For method selection, supervised learning techniques like Support Vector Machines (SVM) are 

utilized when labelled data is available, whereas unsupervised methods such as Isolation Forest 

are employed for anomaly detection in unlabelled data. A combination of supervised and 

unsupervised approaches ensures a balanced detection strategy, and ensemble methods like 

Random Forests enhance robustness and generalization. To support real-time adaptation to 

dynamic cloud environments, online learning algorithms are prioritized, and interpretable models 

such as decision trees are chosen for their transparency and ease of result interpretation. By 

leveraging diverse data sources and aligning feature and method selection with these principles, 

the system ensures effective cloud operation monitoring, accurate real-time anomaly detection, 

and enhanced operational reliability and security. 

 

3.  Results and Accuracy  

Implementing an Automated Anomaly Detection System for cloud operations, which utilizes 

continuous analysis of logs, metrics, and performance data through machine learning, results in 

early detection of issues in real-time or near real-time, mitigating potential problems before they 

escalate and ensuring smoother operations. This proactive approach enhances operational 

efficiency by identifying inefficiencies or deviations from normal behaviour, optimizing resource 

allocation, and improving overall performance.  Integrating Support Vector Machines (SVM) and 

Random Forest algorithms into such systems brings significant advantages. SVM excels in 

identifying anomalies by separating normal data points from anomalies in high-dimensional 

spaces, enabling early detection of subtle deviations in cloud environments. Meanwhile, Random 

Forests handle complex datasets effectively by aggregating predictions from multiple decision 

trees, enhancing anomaly detection across various metrics and logs. 

 

Overall Accuracy assesses the model's correctness in classifying instances across all classes. It 

calculates the proportion of correctly classified instances (both true positives and true negatives) 

relative to the total number of instances evaluated (true positives, true negatives, false positives, 
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and false negatives). This metric provides a comprehensive view of the model's overall 

effectiveness. 

 

Precision measures the accuracy of the model's positive predictions. It evaluates the proportion of 

instances predicted as positive that are actually positive (true positives). Precision is essential in 

applications where minimizing false positives is critical, as it indicates the reliability of the model's 

positive predictions. Recall, also known as sensitivity, gauges the model's ability to correctly 

identify positive instances among all actual positive instances. It calculates the proportion of true 

positive instances that the model correctly identifies. Recall is particularly important in scenarios 

where capturing all positive instances is crucial, such as in anomaly detection or medical 

diagnostics. The formulas for both in machine learning are as follow: 

                              

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Accuracy measures the overall correctness of a model by calculating the ratio of correct predictions 

to total predictions. Precision indicates how many of the predicted anomalies are actually true 

anomalies, while Recall shows how many actual anomalies were correctly detected by the model. 

 

4.1 SVM for Automated Anomaly Detection 

 

The performance matrix for the Support Vector Machine (SVM) algorithm in a binary 

classification context highlight both its strengths and areas for improvement. As shown in Table 

4, SVM achieves a high True Positive Rate (99.6%), demonstrating its effectiveness in correctly 

identifying positive instances, where "yes" represents an alert status for anomaly detection within 

the dataset. However, the False Positive Rate stands at 100%, indicating a tendency to misclassify 

negative instances ("no") as positives, which requires further refinement to reduce false alarms. 

The Precision of 97.4% suggests that when SVM predicts an instance as positive, it is accurate in 

most cases. Meanwhile, the Recall of 99.6% highlights its strong capability in capturing actual 

positive instances. The F-Measure of 98.5% balances precision and recall, offering a 

comprehensive assessment of SVM’s overall performance. This matrix underscores SVM’s 

robustness in detecting positive cases but also emphasizes the need to enhance its ability to 

differentiate between classes. Improving this distinction is essential, especially in applications 

where minimizing false positives is critical to maintaining reliability and operational efficiency. 

 

Table 4. Performance Matrix of SVM 

                              TP Rate   FP Rate   Precision   Recall   F-Measure   MCC   ROC 

Area   PRC Area   Class 

                              0.996     1.000       0.974        0.996      0.985         -0.010    0.419           

0.966            no 

                              0.000     0.004       0.000       0.000       0.000         -0.010    0.419           

0.034           yes 
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Weighted Avg.     0.970     0.974       0.949       0.970        0.959         -0.010    0.419           

0.942    

 

Table 5. Confusion Matrix of SVM 

Confusion Matrix 

   a        b   <-- classified as 

 971      4 |   a = no 

  26       0 |   b = yes 

 

The Confusion Matrix is a fundamental tool in evaluating the performance of a classification 

model in Table 5. It summarizes the predictions made by the model against the actual outcomes 

across different classes. Let's break down the provided Confusion Matrix: 

• 971 (True Negatives): Instances correctly predicted as "no" out of 975 actual "no" 

instances. 

• 4 (False Positive): Instances incorrectly predicted as "yes" out of 975 actual "no" instances. 

• 26 (False Negative): Instances incorrectly predicted as "no" out of 26 actual "yes" 

instances. 

• 0 (True Positive): Instances correctly predicted as "yes" out of 26 actual "yes" instances. 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
971 + 0

971 + 0 + 26 + 4
 

 

This calculation shows that the overall accuracy of the model, based on the provided confusion 

matrix, is approximately 97.0%. The confusion matrix provides actionable insights into the 

performance of the anomaly detection system. They help in assessing its effectiveness, guiding 

improvements, and ensuring that the system reliably identifies and addresses anomalies in cloud 

operations, thereby enhancing operational resilience and performance. 

 

4.2 Random Forest for Automated Anomaly Detection 

Random Forest is a powerful machine learning algorithm that operates by constructing multiple 

decision trees during training and outputting the mode of the classes (classification) or the mean 

prediction (regression) of the individual trees in Table 6. 

 

Table 6. Performance Matrix of Random Forest 

 

Class                          P Rate    FP Rate   Precision   Recall   F-Measure   MCC      ROC 

Area   PRC Area    

                          1.000       1.000       1.000        1.000     1.000           1.000      1.000           

1.000           no 

                          1.000       1.000       1.000        1.000     1.000           1.000      1.000           

1.000           yes 

Weighted Avg. 1.000        1.000         1.000        1.000      1.000             1.000       1.000            

1.000         

 

To calculate the overall accuracy from the confusion matrix provided: 
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• True Negatives (TN): 1001 (instances correctly predicted as "no") 

• False Positives (FP): 0 (instances incorrectly predicted as "yes") 

• False Negatives (FN): 0 (instances incorrectly predicted as "no") 

• True Positives (TP): 0 (instances correctly predicted as "yes") 

 

Table 7. Confusion Matric of Random Forest for Anomaly Detection 

Confusion Matrix 

     a        b   <-- classified as 

 1001      0 |    a = no 

    0         0 |    b = yes 

 

Therefore, the overall accuracy of the confusion matrix is 1.0, or 100%. This indicates perfect 

classification accuracy where all instances are correctly classified as "no" in Table 7. 

 

4.3 DNN and XGBoost for Automated Anomaly Detection 

 

To assess the classification performance of additional machine learning models within the 

proposed anomaly detection system, Deep Neural Network (DNN) and Extreme Gradient Boosting 

(XGBoost) were evaluated using a test dataset consisting of 1001 samples, comprising 

approximately 95% normal ("no") and 5% anomalous ("yes") instances. The DNN classifier 

achieved a high accuracy of 99.2%, correctly classifying 993 out of 1001 samples. A total of eight 

misclassifications were recorded, predominantly false negatives, which is common in imbalanced 

anomaly detection tasks. This table summarizes the detailed classification metrics for DNN. For 

the "no" (normal) class, the True Positive Rate (Recall) is 0.995, meaning nearly all normal 

samples are identified correctly. The False Positive Rate of 0.113 is relatively low, indicating few 

misclassifications. For the "yes" (anomalous) class, recall is 0.887, showing strong sensitivity in 

detecting anomalies. Both classes show a precision of 0.959, meaning the model is reliable in its 

positive predictions. The F-measure (harmonic mean of precision and recall) is 0.977 for normal 

and 0.922 for anomalies. The Matthews Correlation Coefficient (MCC) of 0.854 confirms 

balanced performance across both classes in Table 8. High ROC Area (0.995) and PRC Area 

(0.964/0.936) indicate excellent discrimination and precision-recall trade-off. 

 

Table 8. Performance Matrix of DNN 

Metric TP 

Rate 

FP 

Rate 

Precision Recall F-

Measure 

MCC ROC 

Area 

PRC 

Area 

Class 

No 0.995 0.113 0.959 0.995 0.977 0.854 0.995 0.964 No 

Yes 0.887 0.005 0.959 0.887 0.922 0.854 0.995 0.936 Yes 

Weighted 

Avg. 

0.993 0.101 0.959 0.993 0.975 0.854 0.995 0.963 
 

 

This Table 9 shows the classification outcomes of the Deep Neural Network (DNN) model on the 

test dataset of 1001 samples. The rows represent the actual class labels (normal or anomalous), 

and the columns represent the predicted labels. The model correctly classified 946 normal samples 

and 47 anomalous samples, while misclassifying 2 normal samples as anomalies (false positives) 

and 6 anomalies as normal (false negatives). With 993 total correct predictions, this yields an 
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overall accuracy of approximately 99.2%. The relatively low false negative count indicates that 

the DNN is effective at identifying anomalies, even under class imbalance conditions. 

 

Table 9. Confusion Matrix – DNN         

a     b   <-- classified as 

946     2       | a = no 

6    47         | b = yes 

 

The XGBoost model achieved an overall accuracy of 98.8%, correctly classifying 989 out of 1001 

samples, with 12 total misclassifications. This Table 10 provides the classification metrics for 

XGBoost. For the normal class, recall is 0.990, and precision is 0.954, with a high F-measure of 

0.972. For anomalies, the recall drops slightly to 0.839, and precision is 0.940, indicating that the 

model identifies most but not all anomalies. The F-measure for anomalies is 0.886, which is lower 

than that of DNN, suggesting slightly less balance between precision and recall. The overall MCC 

is 0.830, which, while strong, is marginally lower than that of DNN. ROC (0.988) and PRC (0.956 

for normal, 0.921 for anomalies) values remain consistently high, reinforcing the model’s 

effectiveness for binary classification in imbalanced settings. 

Table 10. Performance Matrix of XGBoost 

Metric TP 

Rate 

FP 

Rate 

Precision Recall F-

Measure 

MCC ROC 

Area 

PRC 

Area 

Class 

No 0.990 0.143 0.954 0.990 0.972 0.830 0.988 0.956 No 

Yes 0.839 0.010 0.940 0.839 0.886 0.830 0.988 0.921 Yes 

Weighted 

Avg. 

0.989 0.130 0.953 0.989 0.969 0.830 0.988 0.951 
 

 

This Table 11 presents the prediction results of the Extreme Gradient Boosting (XGBoost) model 

on the same dataset. The model correctly classified 942 normal samples and 47 anomalies, but 

misclassified 3 normal samples as anomalous (false positives) and 9 anomalies as normal (false 

negatives). With 989 correct classifications, the resulting accuracy is approximately 98.8%. While 

slightly lower than DNN, XGBoost still demonstrates strong anomaly detection performance. 

However, the higher false negative count compared to DNN suggests a slightly reduced sensitivity 

to rare anomalies. 

 

 

Table 11. Confusion Matrix – XGBoost 

      a           b   <-- 

classified as 

     942        3 | a = no 

       9         47 | b = yes 

 

Both models demonstrated high accuracy and robustness on the imbalanced dataset. The DNN 

classifier slightly outperformed XGBoost in terms of recall and F-measure, particularly for the 

minority (anomalous) class. DNN’s superior performance is attributed to its deep architecture, 

which effectively captures non-linear relationships in high-dimensional cloud metrics. XGBoost, 
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though slightly behind in sensitivity, maintained strong precision and ROC values due to its 

gradient boosting strategy that reduces overfitting and improves generalization. 

 

The Matthews Correlation Coefficient (MCC), a more balanced measure for imbalanced data, was 

also higher for DNN (0.854) compared to XGBoost (0.830), reinforcing its better overall 

classification quality. These findings highlight the suitability of DNN for real-time cloud anomaly 

detection tasks, while XGBoost remains a competitive and interpretable alternative. 

 

 

 
 

Figure 2. Accuracy comparison of supervised machine learning models used for anomaly 

detection in cloud environments, including Support Vector Machine (SVM), Random Forest, 

Deep Neural Network (DNN), and Extreme Gradient Boosting (XGBoost). 

 

Figure 2 illustrates the comparative accuracy performance of four supervised machine learning 

models employed in the proposed anomaly detection framework for cloud operations. The models 

evaluated include Support Vector Machine (SVM), Random Forest, Deep Neural Network (DNN), 

and Extreme Gradient Boosting (XGBoost). Among them, Random Forest achieved the highest 

classification accuracy of 100%, owing to its ensemble learning capability that combines multiple 

decision trees to improve predictive power and generalization, especially under both labeled and 

unlabeled scenarios. 

 

DNN followed closely with an accuracy of 99.2%, demonstrating its ability to capture complex, 

nonlinear relationships in high-dimensional system logs and performance metrics. XGBoost 

achieved 98.8% accuracy by efficiently leveraging gradient boosting and tree pruning to reduce 

overfitting while maintaining strong learning performance. SVM, while slightly lower at 97%, still 

exhibited solid accuracy for anomaly detection on labeled datasets due to its robustness in high-

dimensional spaces and effectiveness with limited training samples. These results validate the high 

reliability of ensemble and deep learning models in detecting anomalies in diverse and dynamic 

cloud computing environments. The consistently high accuracy across models further supports the 

proposed system’s capability for proactive fault detection, real-time response, and operational 

resilience. The comparative analysis in Figure 2 underlines the strength of combining multiple 
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supervised learning models for a holistic and accurate anomaly detection strategy in cloud 

infrastructure. 

 

The presented Figure 3 provides a comprehensive analysis of system performance metrics and 

detected anomalies across four critical resource categories: CPU Usage, Memory Usage, Disk I/O, 

and Network Traffic. The blue bars represent performance metrics, measured either in percentage 

or count, offering insight into how each resource is being utilized. Notably, Network Traffic 

exhibits the highest resource consumption, followed by CPU Usage, Memory Usage, and Disk 

I/O, suggesting that network-related processes are experiencing the most significant demand, 

possibly due to high data transmission rates, cloud-based interactions, or network-intensive 

applications.  

 

Conversely, the red line with data points represents detected anomalies, which remain consistently 

low across all categories. The minimal number of detected anomalies suggests stable system 

behavior with no major irregularities, indicating that the system is functioning within expected 

operational parameters. This finding is crucial for real-time system monitoring, anomaly detection, 

and performance optimization, as it enables administrators to identify and address potential 

performance bottlenecks before they escalate into critical failures.  

 

 
 

Figure 3. Dashboard Illustrating Real-time Visualization of Detected Anomalies and 

Performance Metrics. 

 

Additionally, the visualization allows for an early warning system for security threats or hardware 

malfunctions, ensuring that resource-intensive tasks do not lead to system instability. By 

continuously analyzing trends in both performance metrics and anomaly detection, organizations 

can implement proactive system maintenance strategies, optimize resource allocation, and improve 

overall system efficiency. In environments such as data centers, cloud computing infrastructures, 

and enterprise IT systems, monitoring such performance trends is essential for ensuring 

uninterrupted service availability and mitigating risks associated with unexpected system failures 

or cyber threats. 
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Figure 4. ROC Curve for Automated Anomaly Detection 

 

The ROC curve shown provides a comparative evaluation of four supervised machine learning 

models—Support Vector Machine (SVM), Random Forest, Deep Neural Network (DNN), and 

Extreme Gradient Boosting (XGBoost)—for anomaly detection in cloud operations. While all 

models display high overall accuracy, the ROC plot reveals critical differences in their actual 

detection performance. The SVM model, with an accuracy of 97.0%, is plotted near the origin of 

the graph, indicating a very low false positive rate (FPR) but a true positive rate (TPR) of zero. 

This suggests that although SVM rarely misclassifies normal data as anomalous, it entirely fails to 

detect actual anomalies, making it ineffective in real-world detection scenarios. Similarly, the 

Random Forest model, despite achieving a perfect accuracy of 100%, is also plotted at the origin 

(0,0) on the ROC curve, reflecting neither false positives nor true positives. This outcome indicates 

that Random Forest did not identify any anomalies at all, highlighting a potential issue of 

overfitting to the majority (normal) class, likely caused by class imbalance in the dataset. 

 

In contrast, the DNN and XGBoost models demonstrate strong anomaly detection capabilities. The 

DNN model, with a high accuracy of 99.2%, is positioned near the top-left corner of the ROC plot, 

reflecting a high TPR of approximately 0.887 and a very low FPR of around 0.002. This indicates 

that the DNN is highly effective at detecting anomalies while minimizing false alarms. Similarly, 

the XGBoost model, with an accuracy of 98.8%, also performs well, achieving a TPR of about 

0.839 and an FPR near 0.003. Both models are plotted well above the diagonal line representing a 

random classifier, signifying strong discriminatory power between normal and anomalous 

instances. 

 

Overall, while SVM and Random Forest appear strong in terms of accuracy, the ROC curve reveals 

that they lack the ability to effectively detect anomalies, likely due to class imbalance and poor 
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sensitivity to minority-class patterns. In contrast, DNN and XGBoost strike a much better balance 

between sensitivity and specificity, making them more reliable choices for real-time anomaly 

detection in cloud-based environments. This underscores the importance of using performance 

metrics like TPR, FPR, and ROC curves—beyond simple accuracy—to evaluate models in 

imbalanced classification tasks. 

 

Conclusion 

The Automated Anomaly Detection System for Cloud Operations represents a significant 

breakthrough in ensuring the security, stability, and efficiency of cloud environments. By 

leveraging continuous analysis of logs, system metrics, and performance data through machine 

learning algorithms, the system provides a proactive approach to anomaly detection and resource 

management. The integration of supervised learning techniques, such as Support Vector Machines 

(SVM), and unsupervised methods, such as Isolation Forests, ensures a robust, accurate, and 

adaptable framework for identifying potential system anomalies before they escalate into critical 

failures. This advanced detection system enhances operational efficiency by enabling real-time 

identification and mitigation of potential threats, reducing downtime, and optimizing cloud 

resource utilization. By swiftly responding to anomalies, cloud operators can prevent service 

disruptions, mitigate security breaches, and maintain high system availability. Additionally, the 

system lays the groundwork for scalable and adaptive cloud operations management, allowing 

organizations to seamlessly expand their cloud infrastructure while maintaining optimal 

performance. Future developments should focus on enhancing scalability and adaptability across 

diverse cloud architectures, ensuring seamless deployment in hybrid, multi-cloud, and edge 

computing environments. Furthermore, integrating advanced analytics and deep learning-based 

predictive maintenance could further bolster the system’s ability to anticipate failures before they 

occur, enabling self-healing and intelligent automation of cloud infrastructure. These 

enhancements will solidify the critical role of anomaly detection systems in safeguarding modern 

cloud environments against evolving cyber threats, performance degradation, and operational 

challenges, ensuring long-term resilience and sustainability of cloud-based services. 
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