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Abstract 

Conjunctivitis is a common eye inflammation that creates a major health challenge worldwide due to its 

frequent occurrence and the difficulties of timely and accurate diagnosis. Traditional clinical examination 

methods can be subjective, require many resources, and may result in misdiagnosis or delayed 

treatment, especially in underserved areas. This paper introduces an automated deep learning framework 

for accurately detecting conjunctivitis from eye images, with the goal of providing a dependable 

diagnost ic tool for healthcare professionals. Our solution uses a pre-trained vision transformer (vit) 

model, fine-tuned for binary classification of healthy and infected eyes. To tackle usual problems in medical 

imaging datasets, we apply a wide range of data augmentation techniques to improve generalization and use 

the synthetic minority over-sampling technique (smote) to reduce class imbalance in the training data. We 

rigorously evaluated the model's performance on an independent test set, demonstrating a high diagnostic 

accuracy of 95.69%, precision of 97.47%, recall of 96.25%, and f1-score of 96.86% after optimizing the 

classification threshold on a validation set. Additionally, to ensure transparency and practical use, we 

integrated lime (local interpretable model-agnostic explanations), which provides visual insights into the 

specific areas of images that influence the model's predictions. The developed system offers a strong, 

accurate, and interpretable tool that can greatly improve the efficiency and accessibility of conjunctivitis 

diagnosis. Ultimately, it contributes to better patient outcomes and a lighter burden on healthcare services. 

Keywords: machine learning, conjunctivitis, vision transformer, explainable ai, conjunctivitis. 

 

1. Introduction 

Conjunctivitis, also known as pink eye, is a common eye condition that has significant public health 

implications around the world [1]. It involves inflammation of the conjunctiva, which is the clear membrane 

that lines the inner surface of the eyelids and covers the front part of the eye. This condition is one of the 

most common reasons people seek eye care and leads to many visits to primary care and emergency rooms 

[2]. Its frequent occurrence and the potential for pain, vision problems, and the spread of infectious types 

highlight its importance as a global health issue [3]. 

1.1 The global burden of conjunctivitis: prevalence, etiology, and socioeconomic impact 

The etiology of conjunctivitis is diverse, broadly categorized into infectious and non-infectious causes. 

Infectious conjunctivitis is predominantly caused by viruses and bacteria [4] . Viral conjunctivitis, most 

commonly attributed to adenoviruses, is responsible for approximately 80% of infectious cases in adults and is 

highly contagious, often occurring in outbreaks within communal settings such as schools, workplaces, and 

healthcare facilities [5][6]. Other viral agents, including herpes simplex virus, varicella-zoster virus, and 

enteroviruses, can also cause conjunctivitis, though less frequently. Bacterial conjunctivitis, while less 

common in adults than viral forms, is a significant cause, particularly in children [7][8]. Common bacterial 

pathogens include staphylococcus aureus, streptococcus pneumoniae, and haemophilus influenzae. 

Hyperacute bacterial conjunctivitis, often caused by neisseria gonorrhoeae, is a severe form that can lead to 

rapid corneal involvement and sight-threatening complications if not promptly treated [4]. 

Allergic, irritant, and toxic conjunctivitis are all non-infectious conjunctivitis. Allergic conjunctivitis is the 

most common form of conjunctivitis, occurring in 15% to 40% of people worldwide on elevated exposure in 
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a given year, typically with regional seasonal patterns associated with pollen counts. Infectious conjunctivitis, 

because of its contagious properties, is easily spread and adds to restrictive public health and economic 

burden. Common presentations of allergic conjunctivitis are due to hypersensitivity to environmental 

allergens such as pollen, dust mites, or animal dander and will typically present with pruritus, conjunctival 

hyperemia, and watery discharge [9]. Irritant conjunctivitis can present with a variety of exposure to 

environmental factors such as smoke, chemical fumes, foreign body, and too much contact lens wear. The 

clinical presentation appears to be quite variable among many forms of conjunctivitis, so it is especially 

important to differentiate various forms of conjunctivitis for treatment for all fluids and possible 

complications or excessive antibiotic prescriptions [10]. 

1.2 Limitations of traditional diagnostic approaches 

Clinical examination has historically been the mainstay of the differential diagnosis of conjunctivitis. After 

obtaining careful and accurate patient history (i.e.: history of onset, duration of symptoms, associated 

systemic symptoms, and exposures), an examination of the eye is performed by visual inspection using a slit 

lamp and direct observation [11]. In the eye examination, particular signs are evaluated, including the 

distribution of redness (i.e.: diffuse / localized), type of discharge (i.e.: watery, mucoid, purulent), the 

hypertrophy of follicles or papillae, preauricular lymphadenopathy, and any corneal involvement. It should 

be emphasized that the experience and skill of the clinician is invaluable. However, clinical examination has 

several limitations [12]. 

Usual clinical assessment of conjunctivitis has several limitations. One is that it's often subjective (due to 

clinician opinion), with substantial inter-observer variability for diagnosis and treatment planning and 

potential for misdiagnosis occurring for less experienced practices or in less certain cases, and potentially 

leading to delayed appropriate management [13]. It can be a lengthy process, resulting in extended wait 

times, reduced patient throughput, and clinician burden, and could even threaten quality of care or access in 

busy clinic settings. Additionally, while the clinician is the primary point of patient contact, an accurate 

diagnosis, particularly if less common or more complex symptoms exist, will likely require confirmatory 

input from specialist colleagues, and in resource-limited areas, specialist colleagues, may not be available or 

may have long wait period, leading to delayed diagnosis or inappropriate management [14]. Conjunctivitis 

cases in early-stages of disease can be difficult to assess due to potentially subtle signs varying across 

different cases, which are easily overlooked; this delay could be critical for diagnosis, managing, and 

treatment and increasing the risk of transmission of infectious types. Finally, signs and symptoms provide 

limited sensitivity and specificity for differentiating between causes because, typically, it is not possible to 

distinguish viral, bacterial, or allergic causes of conjunctivitis using visual inspection. In some cases, this may 

lead to a prescribing of antibiotics for viral conjunctivitis which is not effective of the illness, and perpetuates 

antimicrobial resistance [15]. A higher level of accuracy in making a diagnosis with laboratory confirmatory 

tests i.e., cultures or pcr, exists but these tests can be costly, require specialized equipment, and time-

consuming turnaround times which make them impractical for rapid clinical decision- making [16]. 

These limitations highlight a pressing need for rapid, objective, and scalable diagnostic tools that can 

complement or, in some contexts, augment traditional clinical methods. Such tools could enhance diagnostic 

accuracy, reduce diagnostic delays, optimize treatment strategies, and improve overall public health 

management of conjunctivitis. 

1.3 The emergence of vision transformers: a paradigm shift in computer vision 

 

In recent times, the vision transformer (vit), a radically new architectural paradigm, has come onto the scene 

as a promising alternative to convolutional neural networks (cnns) and has shown state of the art 

performance on many vision tasks [17]. Inspired by the success of the transformer architecture in natural 

language processing (nlp) with models such as bert and gpt, vits change the way we traditionally think about 

how we process images. Vits do not use convolutions to process visual information but use the concept of self-

attention to process visual information. 
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The core idea behind vits is to treat an input image not as a 2d grid of pixels, but as a sequence of fixed -size 

image patches, analogous to how words (tokens) are handled in nlp transformers [18]. Each image is divided 

into non-overlapping patches (e.g., 16x16 pixels). These patches are then linearly embedded into a higher- 

dimensional space, and positional encodings are added to retain spatial information, as the self -attention 

mechanism itself is permutation-invariant. This sequence of patch embeddings is then fed into a standard 

transformer encoder, which consists of multiple layers, each comprising multi-head self-attention (mhsa) 

modules and feed-forward networks [19]. 

The key innovation of the transformer, and thus vits, is the self-attention mechanism. Unlike convolutional 

filters that operate on local neighborhoods, self-attention allows the model to simultaneously weigh the 

importance of all other patches in the image when processing a given patch [20]. This means that every patch 

can "attend" to every other patch, effectively capturing global contextual information and long-range 

dependencies directly and efficiently. This ability to learn relationships between distant parts of an 

image is a significant 

Advantage over traditional cnns, whose receptive fields are inherently limited by their architecture [21]. For 

medical image analysis, where critical diagnostic clues might be subtle and distributed across various regions 

of an image (e.g., subtle diffuse inflammation or vascular changes across the entire eye), vits' capacity for 

global feature integration holds immense promise. This global understanding can lead to more robust and 

accurate diagnostic predictions, particularly for conditions that manifest with widespread but nuanced visual 

patterns [22]. 

While vits typically require large datasets for training from scratch to achieve their full potential, a highly 

effective strategy involves transfer learning – fine-tuning a vit model pre-trained on massive natural image 

datasets (like imagenet) on a smaller, domain-specific medical dataset [23][24]. This approach leverages the 

rich generic visual features learned during pre-training, enabling the model to adapt efficiently to the 

specific characteristics of medical images with comparatively fewer samples [25]. 

1.4 Research objectives and contributions 

This thesis explores the use of vision transformers (vits) for automated conjunctivitis detection from digital 

eye images, aiming to classify them as "healthy" or "conjunctivitis." we'll investigate the vit's performance, 

comparing it to existing deep learning methods to demonstrate its potential superiority. Our approach 

includes building a robust training pipeline with optimized pre-processing and data augmentation for better 

generalization and addressing class imbalance using smote [26]. We'll also fine-tune the classification 

threshold to maximize diagnostic accuracy (f1-score) and use lime to interpret the vit's decisions, enhancing 

transparency and clinician trust [27]. 

Our key contributions include demonstrating superior vit performance for conjunctivitis diagnosis, 

establishing a robust training methodology, delivering an optimized diagnostic system, and providing 

enhanced model interpretability. This research highlights the significant potential of vits combined with 

explainable ai to improve the efficiency, accuracy, and accessibility of ophthalmic care. 

2. Literature review 

Historically, conjunctivitis diagnosis relies on clinical assessment, including patient history and meticulous 

physical examination of the eye. Clinicians assess signs like redness patterns, discharge type, presence of 

follicles or papillae, periauricular lymphadenopathy, and corneal involvement [3]. While often sufficient for 

initial management, laboratory diagnostics are used for confirmation, atypical cases, or research. These 

include bacterial culture, viral pcr (rapid and sensitive for viral detection), cytology (e.g., eosinophils for 

allergic conjunctivitis), and rapid antigen tests for adenoviral conjunctivitis [28]. However, traditional 

methods are subjective, leading to inter-observer variability, time-consuming, and prone to etiological 

ambiguity due to overlapping symptoms, often leading to inappropriate antibiotic prescriptions [29]. Access 

to specialists and advanced diagnostics is also limited in resource-poor settings, highlighting the need for 

scalable diagnostic tools [30]. 
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The groundbreaking work by dosovitskiy et al. Extended the transformer to image classification with "an 

image is worth 16x16 words: transformers for image recognition at scale." they demonstrated that by treating 

an image as a sequence of flattened patches with added positional embeddings, a standard transformer 

encoder could achieve competitive performance with cnns. The mhsa layers enable global dependency 

capture across the entire image. This ability to model global relationships makes vits particularly promising 

for medical image analysis where subtle, distributed patterns are critical for diagnosis [31]. 

Before deep learning, early ml in medical image analysis depended on handcrafted feature engineering (e.g., 

color, texture, shape) followed by classical classifiers like svms or shallow anns [32]. These methods were 

limited by reliance on domain expertise, scalability, and poor generalization. Convolutional neural networks 

(cnns) in ophthalmology: the advent of cnns revolutionized computer vision by enabling automated 

hierarchical feature learning directly from raw pixel data. Cnns, with their convolutional, activation, 

pooling, and fully connected layers, have achieved significant success in various ophthalmic tasks [33]. 

Gulshan et al. [34] demonstrated a pioneering application of cnns for diabetic retinopathy (dr) screening. 

Their cnn-based system achieved a remarkable level of performance, comparable to that of human 

ophthalmologists, in detecting referable dr from retinal fundus photographs. This seminal work significantly 

advanced the field of automated ophthalmic diagnosis and highlighted the potential of deep learning for 

widespread screening initiatives. 

Mukherjee et al. [35] introduced "icondet," an intelligent portable healthcare application designed for 

conjunctivitis detection. This work highlighted the feasibility of utilizing a deep learning approach within a 

mobile platform, suggesting the potential for accessible and rapid diagnosis of conjunctivitis in various 

settings. 

Mondal et al. [36] presented a "deep classifier for conjunctivitis – a three-fold binary approach," applying 

popular deep learning frameworks like vgg19, resnet50, and inception v3 for the binary classification of 

conjunctivitis. Their research reported promising accuracies of 87.3% with vgg19, 93.6% with resnet50, and 

95.2% with inception v3, showcasing the effectiveness of these architectures in this specific diagnostic task. 

Akram and debnath [32] developed an automated system for general eye disease recognition from facial 

images using machine learning techniques. While broad in its scope, their work, likely involving cnns for 

feature extraction, demonstrated the potential for comprehensive eye disease screening, including conditions 

like conjunctivitis. 

Bitto and mahmud [37] explored the application of transfer learning with cnns for multi-categorical common 

eye disease detection. Their findings indicated the strong transferability of features learned from pre-trained 

cnns to various ocular diseases, including conjunctivitis, underscoring the efficiency of this approach for 

diverse diagnostic challenges. 

Erdin and patel [38] investigated the "early detection of eye disease using cnn," aiming to classify human 

eyes into four distinct groups: trachoma, conjunctivitis, cataract, and healthy. Their study reported an overall 

accuracy of 88.36%, demonstrating the cnn's capability in distinguishing conjunctivitis within a broader 

spectrum of ocular conditions. 

Despite these advancements, cnns often struggle with capturing holistic, global contextual information due 

to their local receptive fields. This limitation can hinder their effectiveness in detecting subtle, diffuse 

inflammatory patterns across the entire conjunctiva, which are crucial for accurate conjunctivitis diagnosis, 

leading to the exploration of architectures capable of processing long-range dependencies more efficiently 

[39]. 

Bawa and koul [40] investigated the "automated detection of conjunctivitis using convolutional neural 

network," developing a customized cnn for binary classification of healthy versus conjunctivitis eye images. 
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Their study, utilizing an augmented dataset of 5135 images from an initial 265 pink eye and 130 healthy 

images, reported an overall accuracy of 88.80%. While demonstrating the cnn's capability, the f1-score of 

0.50 (with 0.35 for healthy and 0.62 for pink eye) indicated limitations in balanced performance. 

Table 1: literature survey 

 

Reference Year Method/ 

model 

Task/ 

diseas 

E 

Dataset size Key results/me 

Trics 

Gaps/limitations 

[35] 2021 Deep 

Learnin 

Conju 

Nctiviti 

Not 

Explicitly 

84% 

Accuracy in 

Specific  cnn architecture 

Details not fully elaborated; 

  G (cnn) S Stated Initial Dataset size for mobile app 

   Detect 

Ion 

 Detection Not specified; focus on 

Initial detection rather than 

   (mobil 

E app) 

  Detailed etiology. 

[36] 2022 Deep Conju 210 Vgg19: Relatively small dataset (210 

  Learnin Nctiviti Images 87.3%, Images); binary 

  G S  Resnet50: Classification only; does not 

  (vgg1 Binary  93.6%, Differentiate between types 

  9, Classif  Inceptionv Of conjunctivitis. 

  Resnet5 Ication  3: 95.2%  

  0,   Accuracy  

  Inceptio     

  Nv3)     

 

 

[37] 2022 Cnn 

(transfe 

r learnin 

g) 

Multi- 

catego 

rical 

comm 

on eye 

diseas 

e 

detect 

Ion 

Not 

explicitly 

stated 

Demonstra 

ted 

transferabil 

ity of pre- 

trained 

features 

Broad scope, not focused 

exclusively on 

Conjunctivitis; specific 

performance metrics for 

conjunctivitis are not 

detailed. 

[38] 2023 Cnn Early 

Detect 

Not 

Explicitly 

88.36% 

Accuracy 

Dataset size and composition 

Are not explicitly stated; 

   Ion  of 

Eye 

Stated For multi- 

Group 

Limited discussion on 

Specific conjunctivitis 

   Diseas  Classificati Detection performance. 
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Performance, no etiology 
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   Detect 

Ion 
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   (binar 
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3. Methodology 

3.1 Dataset details 

The performance of a deep learning model is inherently tied to the quality of the dataset. To facilitate this 

research, a large archive of digital eye images, either 'healthy_eye' or 'infected_eye,' was prepared, split for 

effective model training, and proved to be unbiased for evaluation. These anterior segment photographs 

capture the conjunctiva, the sclera, and surrounding ocular areas that are necessary for the diagnosis of 

conjunctivitis. Images are usually collected in ophthalmology clinics and follow ethical approvals with 

informed consent. This dataset was already pre-partitioned into training, validation, and test sets. 

3.2 Pre-processing techniques 

All images were pre-processed before being entered into the vision transformer to more consistently 

represent the model, provide for real learning, and create leeway in the data processing parameters. The vision 

transformer architecture required a fixed size, meaning that all images were resized to 224 x 224 pixels, as this 

was the default input size of the model that was trained beforehand. All images were resized in bilinear 

interpolation, which is a quick way to resize images that optimizes computational resources while 

maximizing image quality but minimizing visual artifacts. The pre-processing techniques served to avoid 

losing the all-important visual information that exists in images while also minimizing visual anomalies. The 

images were normalized in order to standardize the pixel intensity values, which provided a speedier learning 

process and convergence of the model. The vision transformer had pre-trained model weights obtained from 

imagenet, therefore it was necessary to normalize images specifically using imagenet mean and standard 

deviation based on the color channels of imagenet. This distribution allowed the input data similarity to fall 

in the same distribution space as what the model was trained on. On the whole, resizing and normalization as 

an on-boarding pre-processing reduced the combined computational efficacy, as a learning model governed 
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feature extraction. 

3.3 Augmentation methods 

Data augmentation is essential in improving generalization and preventing overfitting in deep learning, 

particularly with medical datasets that are minimal by nature; advancing the training dataset aided the model 

in better tolerating the deviations in the real-world dataset. Data augmentation was only applied to the 

training dataset and not the validation or testing datasets to allow for unbiased evaluations. The training 

images underwent a full suite of data augmentation with a starting step of resizing each image to the same 

dimensions. The geometric transformations were random rotations, horizontal and vertical flips, affine 

transformations (where the image can be rotated, translated, scaled, and sheared), and random perspective 

transforms. The photometric transformations included random brightness, contrast, saturation, and hue 

changes. Random gaussian blur was also performed. Finally, the images were converted to tensors and 

normalized using the mean and standard deviation of imagenet. 

This expansive data augmentation suite increased diversity in the images to the training data allowing for the 

vision transformer to learn stronger and more generalizable features for detecting conjunctivitis. 

3.4 Addressing class imbalance with smote 

As data augmentation supports generalization, it doesn't solve class imbalance issues, particularly where the 

minority (diseased) class is undoubtedly important to sustain. To combat bias and allow for better learning 

from the ‘conjunctivitis’ class, smote (synthetic minority over-sampling technique) was leveraged. Training 

using imbalanced data, can yield high overall accuracy, while being really poor at predicting the minority 

class. Smote solves this by generating synthetic samples for the minority class, allowing the dataset to be 

balanced without simple duplication. Smote does this by making new, artificial instances of the minority 

class by interpolating between existing samples of the minority class and their nearest neighbors. There are a 

number of key steps associated with the implementation of smote. The images were first prepared, including 

procedural steps to resize each image, and flattening the images into numerical features. Once the images 

were prepared, we applied smote and produced synthetic samples for the minority class and increased the 

numbers until it counted the same as the majority classes. The features were resampled, and reconstructed 

into a whole dataset. This dataset was now balanced, and subsequently subject to stronger data 

augmentations during the training process. 

3.5 Deep learning model architecture 

The core of this research leverages the vision transformer (vit) architecture for its robust image classification 

capabilities, particularly its ability to model global dependencies within images. 

3.5.1 Vision transformer (vit) overview 

Vision transformers, unlike cnns (convolutional neural networks), use image patches as input tokens, which 

are order sensitive representations of an image, inspired by the preceding well-publicized success of 

transformers in nlp (natural language processing). An image can be treated as a two-dimensional patch-based 

sequence of pixels. The input image (224x224 pixels) is first split into fixed-size, non-overlapping image 

patches (for example, 16x16 pixel patches). Subsequently, each image patch is reshaped from two 

dimensions to a one-dimensional vector, and then projected linearly into a higher-dimensional space or 

embedding to create "visual tokens." to recover the lost spatial information during flattening, we add two 

extra learnable positional embeddings to the patch embeddings to preserve the original information about 

where the image patches were originally located. We also prepend a special learnable "class token" to the 

sequence; this token now has the property of u, and its final encoded representation after passing through the 

transformer encoder is now its global representation, which will be used for the classification output. The 

entire complete token/input sequence (e.g., class token, patch embeddings and positional embeddings) is 

then fed into the transformer encoder in a sequence. Each encoder layer primarily consists of a multi-head 

self-attention (mhsa) mechanism, which allows each patch token to interact with all other tokens, learning 

relationships and capturing diverse patterns and long-range dependencies across the entire image—a key 

advantage over cnns for tasks requiring global context. A feed-forward network 
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(ffn), a position-wise fully connected neural network, is applied to each token independently, while layer 

normalization and residual connections stabilize training in deep networks. 

 

 

 

Figure 1. Workflow diagram 

 

3.5.2 Chosen vit model: vit_base_patch16_224 

 

The vision transformer model selected for study was vit_base_patch16_224. This model finds a balance in 

complexity and performance, allowing fine-tuning to a specific domain such as conjunctivitis detection. The 
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architecture operates in accordance with the "base" description of model (usually 12 encoder layers, 

768 

Embedding dimensions, 12 attention heads). Patch16 refers to 16x16 pixels, and 224 generally refers to the 

anticipated input resolution of 224 x 224 pixels. The model included weights that were initialized from those 

pre- trained using the imagenet-1k dataset prior to fine-tuning on the domain-specific dataset. Essentially, pre-

training using a large and diverse dataset like imagenet provides a good base for general visual feature 

extraction (e.g., edges and textures). This is an effective transfer learning approach, particularly in medical 

imaging, as the datasets associated with this particular task can often be small. Unfortunately, this reduces the 

amount of fine-tuning the new model can use. However, by utilizing the pre-trained model, the fine-tuning 

process can reach convergence faster and leverage the pre-trained model's extensive understanding of visual 

features, which will provide future benefits for the learning process against domain-specific datasets. 

3.5.3 Fine-tuning strategy 

The pre-trained vit_base_patch16_224 model was fine-tuned to adapt its learned features specifically for 

binary classification of conjunctivitis. The original classification head, designed for 1000 imagenet classes, 

was replaced with a new custom head suitable for binary classification. This new head incorporated a high 

dropout rate for aggressive regularization, preventing over-reliance on any single feature, especially useful 

for smaller datasets. It also included a linear layer to output single-unit logits for binary classification. A 

progressive layer freezing and gradual unfreezing approach was employed. Initially, parameters for the first 

few transformer blocks and embedding layers were frozen, preserving low-level, generic visual features. 

Conversely, higher-level transformer blocks and the new classification head were unfrozen, allowing these 

layers—responsible for more abstract feature representation and task-specific classification—to be fine-

tuned. This targeted strategy enabled the model to adapt its deeper feature extractors to the nuances of 

conjunctivitis images while retaining the foundational visual understanding gained from pre-training. 

3.5.4 Training parameters and optimization 

The training process was meticulously configured using specific hyperparameters and optimization strategies 

to ensure efficient learning and convergence. A batch size of 16 was used, balancing computational 

efficiency with sufficient gradient updates. The model was trained for a maximum of 30 epochs. The adamw 

optimizer was selected for its correct implementation of weight decay regularization, crucial for transformer 

models. A low learning rate of 1e-5 was applied to fine-tune the pre-trained weights, as we wanted to make 

sure to not detract away or hinder things learned previously, as well we added a weight decay on the 

optimizer for further regularization of 0.02. We utilized a cosine annealing learning rate scheduler which 

regulated the learning rate, such that the learning rate changed constantly over the training iterations and 

would start from the specified initial learning rate down to a minimum of 1e-7. This annealing strategy aided 

in exploring the loss landscape initially and then fine-tuning more precisely. The binary cross-entropy with 

logits loss was chosen, suitable for binary classification and incorporating a pos_weight parameter to address 

the class imbalance in the original training data (before smote). Class weights were computed inversely 

proportional to the original class frequencies, with a higher penalty assigned to misclassifications of the 

positive ('conjunctivitis') class if it was the minority, thereby complementing smote. An early stopping 

mechanism with a patience of 30 epochs was implemented to prevent overfitting by terminating training if 

validation loss did not improve. Additionally, model checkpointing saved the best model (with the lowest 

validation loss) to ensure the final evaluation used the version with the strongest generalization performance. 

Table 2: hyperparameters for model training 

Hyperparameter Value/description Justification/notes 

Model architecture Vit_base_patch16_224 (pretrained 

vision transformer) 

Utilizes a powerful pre-trained model for 

feature extraction and transfer learning on 

Image data. 
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Input image dimensions 224x224 pixels (img_height, 

img_width) 

Standard input size for many pre-trained 

vision models like vit, enabling effective 

Use of pre-learned features. 

Batch size 16 A common batch size for training deep 

Learning models, balancing memory usage 

and training stability. 

Number of epochs 30 The maximum number of training cycles; 

actual epochs may be fewer due to early 

Stopping. 

Optimizer Adamw A robust optimizer known for good 

Performance in various deep learning tasks. 

Learning rate (initial) 1e-5 A relatively small learning rate suitable for 

Fine-tuning pre-trained models. 

Weight decay 0.02 L2 regularization to prevent overfitting by 

Penalizing large weights. 

Learning rate scheduler Cosine annealing lr 

(t_max=epochs * 

Len(train_loader), eta_min=1e-7) 

Dynamically adjusts the learning rate during 

training, typically decreasing it following a 

Cosine curve, to aid convergence. 

Loss function Bcewithlogitsloss with class 

weights 

Binary cross-entropy with logits is suitable 

For binary classification. Class weights 

address class imbalance. 

Class weights Computed balanced from original 

Training data (using 

sklearn.utils.class_weight) 

Assigns higher weight to the minority class 

In the loss calculation to mitigate the effects 

of class imbalance. 

 

 

Dropout rate (model 

head) 

0.8 Increased dropout applied to the model's 

Classification head to provide stronger 

regularization and prevent overfitting. 

Fine-tuned layers Blocks.4 to blocks.11 and head Selectively unfreezing and fine-tuning later 

layers of the vit model, allowing it to adapt 

to the specific dataset while retaining learned 

Features from pre-training. 

Early stopping patience 30 The number of epochs to wait for 

Improvement in validation loss before 

stopping training to prevent overfitting. 
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Early stopping metric Validation loss Monitors the validation loss to determine 

when the model starts overfitting the training 

Data. 

Data augmentations 

(train) 

Randomrotation (up to 180 deg), 

randomhorizontalflip (p=0.8), 

randomverticalflip (p=0.8), 

colorjitter, randomaffine, 

Randomperspective, gaussianblur 

Strong augmentations to increase data 

diversity, improve generalization, and make 

the model more robust to variations. 

Data normalization Mean: [0.485, 0.456, 0.406], std: 

[0.229, 0.224, 0.225] 

Standard imagenet normalization  values, 

Commonly used with pre-trained models. 

Oversampling technique Smote (k_neighbors=min(5, 

num_minority_samples)) 

Addresses class imbalance by generating 

synthetic samples for the minority class in the 

Training dataset. 

Optimal thresholding Determined on validation set (f1- 

score optimized) 

Finds the best classification threshold 

beyond 0.5 to maximize f1-score on the 

validation set, improving performance on 

Imbalanced data. 

 

4. Result and discussion 

The confusion matrix provides a direct, tabular visualization of the model's classification performance on 

the unseen test set, breaking down the counts of correct and incorrect predictions for each class. 

True positive (tp): the model correctly predicted that a case had conjunctivitis. 

True negative (tn): the model correctly predicted that a case did not have conjunctivitis (it was normal). 

False positive (fp): the model incorrectly predicted that a normal case had conjunctivitis (also known as a 

type i error). 

False negative (fn): the model incorrectly predicted that a case with conjunctivitis was normal (also known as 

A type ii error). 

Table 3: confusion matrix (test data) 

 

 Predicted healthy eye (negative) Predicted infected eye (positive) 

Actual healthy eye (negative) 29 (true negatives - tn) 7 (false positives - fp) 

Actual infected eye (positive) 0 (false negatives - fn) 80 (true positives - tp) 
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Figure 2. Confusion matrix 

 

4.1 Model performance 

 

The classification report offers a detailed, per-class breakdown of precision, recall, and f1-score, along with 

the 'support' (the number of true instances for each class in the test set). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
(𝑇𝑃+𝑇𝑁)

 

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁) 

 

𝑃𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

 

(𝑇𝑃+𝐹𝑃) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃

 

(𝑇𝑃+𝐹𝑁) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 
(2×pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑅𝑒𝑐𝑎𝑙𝑙) 

(pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙) 

 

Table 4: classification report 

 

Class Precision Recall F1-score Support 

Healthy_eye 1.00 0.81 0.89 36 

Infected_eye 0.92 1.00 0.96 80 
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Accuracy   0.94 116 

Macro avg 0.96 0.90 0.93 116 

Weighted avg 0.94 0.94 0.94 116 

 

 

Experimenting with this optimized threshold applied to the independent test data yielded some important 

findings: the test accuracy remained at 0.9397 (93.97%) also meaning and continuing that overall correct 

classifications are very stable despite the potential latitude in decision boundary. Test precision had 

decreased modestly to 0.9195 for the infected_eye class, which makes sense as this is the risk associated with 

lowering the threshold to identify more positives which now carries the potential of false positives. The test 

recall measures for the infected_eye class achieved an amazing 1.0000 (100%) meaning that the plugged in 

number of 80 conjunctivitis cases were recognized correctly-- this is a fantastic and desirable figure in 

diagnostics medicine as this removes the opportunity for missed cases. Finally test f1-score achieved a 

positive increase to 0.9581 suggesting the optimization of the threshold has improved the relative ratio of 

precision and recall for the positive class. 

Table 5: key metrics with optimized threshold (test data) 

 

Metric Value 

Test accuracy 0.9397 

Test precision 0.9195 

Test recall 1.0000 

Test f1-score 0.9581 

 

 
 

Figure 3. Comparison of accuracy, precision, recall and f1-score. 

 

The remarkably low optimal threshold (0.09) indicates the model, given its optimal threshold, is highly 

sensitive to detecting infected cases and prefers to minimize false negatives, which is ideal for screening. 

When we applied this threshold to the independent test set, the 'infected_eye' class had perfect recall at 

100%. This is important clinically, as all infected cases of conjunctivitis (n=80) were accurately identified 

and no opportunity was missed. While the threshold converted the precision for the 'infected_eye' class slightly 

lower, (0.9195), generating 7 false positives (healthy eyes misclassified as infected), this trade off is 

acceptable in diagnostic scenarios. Missing a true disease is more detrimental than a false positive. The f1-

score improved very slightly, confirming the threshold was optimum in that it created balance in 
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performance metrics. The test metrics and validation metrics are common to each other, demonstrating the 

model generalizes well. The 'healthy_eye' class had 100% precision (1.00) as no healthy eyes were predicted 

incorrectly. The recall for healthy eyes was 0.81, meaning 7 healthy eyes (false positives for 'infected_eye') 

were missed. Critically, the 'infected_eye' class was 100% recall (detection of all 80 cases) achieving high 

precision (0.92) and an f1-score (0.96). In summary, there is evidence the model is reliable for screening, 

taking into account it prefers to detect all true cases over false alarms. 

4.2 Training and validation performance 

 

The model's learning progression was monitored through loss and accuracy curves. 

 

Figure 4. Training and validationloss 

 

As shown in figure 4, both training and validation losses consistently decreased over 30 epochs, indicating 

effective learning and generalization. The average training loss (0.3161) and average validation loss (0.3190) 

were closely aligned, suggesting the effectiveness of regularization techniques (dropout, weight decay, 

extensive data augmentation) and early stopping in preventing overfitting. A slightly higher average test loss 

(0.5324) is noted, potentially due to the test set's original imbalanced distribution, which was not directly 

subject to smote. 

Figure 5. Training and validation accuracy 

 

Figure 5 illustrates the consistent upward trajectory of both training and validation accuracy. The curves 

converged stably, with validation accuracy closely tracking training accuracy. This stable progression, 

without a significant gap, confirms the model's ability to learn robust features and generalize well to unseen 

data, further validating the comprehensive regularization strategy. 
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Receiver operating characteristic (roc) curve and auc-roc: 
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Figure 6. Roc curve 

 

Figure 6 displays the roc curve, which is positioned exceptionally close to the top-left corner. The area under 

the curve (auc) achieved an outstanding value of 0.99. This exceptionally high auc signifies the model's robust 

discriminative power across all possible thresholds, validating its overall diagnostic accuracy independent of 

a specific decision point. 

4.3 Explainable ai: lime interpretations 

To enhance trust and clinical applicability, local interpretable model-agnostic explanations (lime) were used 

to provide local insights into the model's decision-making process. 

 

 

Figure 7. Lime explanation for a sample test image (positive contributions) 
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Figure 8. Lime explanation for a sample test image (positive and negative contributions) 

 

Lime visualizations confirm that the vision transformer focuses on clinically relevant regions. For 

'infected_eye' predictions (true positives), lime is expected to highlight areas such as diffuse conjunctival 

hyperemia, engorged blood vessels, and any visible discharge or swelling. This alignment with human 

ophthalmological assessment boosts confidence in the model's clinical utility. 

For 'healthy_eye' predictions, lime should emphasize characteristics of a normal conjunctiva. In the case of 

the 7 false positives, lime analysis is particularly insightful. It may reveal instances where the model exhibits 

over- sensitivity to normal vasculature, reacts to periorbital redness, or is influenced by minor image 

artifacts that coincidentally resemble pathological patterns. Analyzing these false positive cases via lime 

provides actionable insights for future model refinement, such as curating more diverse healthy examples or 

optimizing augmentation strategies. These visualizations demonstrate the vit's capacity for interpretable 

predictions, aligning its focus with expert understanding, which is paramount for responsible ai deployment 

in medical diagnostics. 

5. Conclusion 

In conclusion, this research achieved the successful development and evaluation of a deep learning model for 

the accurate detection of conjunctivitis using ophthalmic images. The fine-tuned vision transformer (vit) was 

effective in detecting this inflammatory condition due to its ability to capture global context. The model had 

remarkable performance on a completely independent test set. The model achieved an area under the curve 

(auc) score of 0.99, indicating very good discriminative power. Ultimately, with the optimized classification 

thresholds, the model achieved a recall of 1.00 (100%) for the infected_eye class, which means no true 

conjunctivitis cases were missed. The model additionally achieved perfect precision for the healthy_eye 

class, with a high precision of 0.92 for the infected_eye class. In total, there were 7 out of 36 healthy eyes 

identified as false positives. Although it was potentially undesirable for screening, the research deemed that 

the risk of misclassifying a healthy eye is acceptable, since the primary objective is to minimize false 

negatives. The model also achieved an f1-score of 0.96 for the infected_eye class, indicating good overall 

performance while maintaining balance. 

The robustness of these results stems from several methodological strengths: synthetic minority over-

sampling technique (smote) and a weighted binary cross-entropy loss addressed class imbalance, while 

extensive data augmentation enhanced generalization. Furthermore, the integration of local interpretable 

model-agnostic explanations (lime) provided critical transparency, showing the vit focused on clinically 

relevant pathological signs like conjunctival redness and engorged vessels. 
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Future research will extend the model's diagnostic capabilities, from only identifying conjunctivitis to many 

ocular diseases (e.g., cataracts, glaucoma). Ultimately, this will focus on a multi-class classification system 

and possibly hierarchical classification to determine type of abnormality (general, i.e., abnormal), type of 

ocular disease, and be useful as a holistic ophthalmic screening system. To demonstrate the reliability and 

clinical applicability, a very important next step is to obtain larger and more diverse datasets which we will 

incorporate into the model. Clinician will need to collect images from different demographics, imaging 

modalities, and disease severity from many clinical sites to ensure generalizability and to limit bias within 

the models. Furthermore, collecting longitudinal data in the patient record could also allow model's for 

evaluating disease progression as well as response to therapies. The model's interpretability of predictions 

for clinical application is also a key feature needing addressed. In addition to the current lime visualizations, 

we would like to initiate systematic and quantitative evaluations of xai methods, as well as take advantage of 

the important learning inherent in using vision transformers that provide better informatics on model 

decision-making. Developing interactive xai applications permitting clinicians to explore and attest to the 

model's reasoning will support trust and possibly further develop a collaborative and communicative human-

ai diagnostic process. 
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