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Abstract—Severe Acute Malnutrition (SAM) continues to be 
a major public health challenge, especially in low-resource and 
tribal regions of India where infrastructure, skilled manpower, 
and real-time health monitoring are often lacking. Early identi- 
fication and timely intervention are critical in preventing serious 
health consequences and death among malnourished children. 
However, in many areas, traditional methods still depend on 
manual data entry and delayed reporting, which often result in 
late responses. To address these challenges, this paper proposes a 
low-cost, IoT-enabled framework that supports realtime remote 
monitoring and prediction of child malnutrition using minimal 
human intervention. The system uses automated weight and 
height sensors with facial recognition to correctly link measure- 
ments to individual children, even in rural Anganwadi centres. 
Data is transmitted using long-range (LoRa) wireless communi- 
cation, allowing uninterrupted operation in areas with poor or no 
mobile connectivity. A key feature of this framework is its ability 
to forecast nutritional trends. By analysing past growth data, the 
system predicts how a child’s nutritional condition may change in 
the coming months using WHO z-score indicators like Weight- 
for-Height (WHZ), Weight-for-Age (WFA), and Height-for-Age 
(HFA). Machine learning models such as ARIMA, SARIMA, 
and LSTM are used to forecast whether a child’s health is 
likely to improve or worsen. These insights empower Anganwadi 
workers to take preventive steps and provide timely counselling to 
caregivers, supported by clear evidence from the system. During 
field-testing in four tribal centres of Chhattisgarh, the framework 
made it easier for workers to collect more accurate data on time, 
helping them act faster and more confidently. This combined 
approach of using smart tools, local knowledge, and forecasting 
can improve early action and make child nutrition programs 
more effective in tribal and remote areas. 

Index Terms—Severe Acute Malnutrition, Internet of Things 
(IoT), LoRa Communication, Anthropometric Measurement, 
Time-Series Forecasting, Edge Computing, Remote Health Mon- 
itoring 

 

I. INTRODUCTION 

Malnutrition is a pervasive problem affecting millions of 

children worldwide. Undernutrition in early childhood leads 

to stunting, wasting, and underweight conditions that sig- 

nificantly impair health and development. According to the 

World Health Organization, 149 million children under 5 are 

stunted and 45 million are wasted globally [1]. India bears a 

large share of this burden, especially among tribal populations 
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in remote regions [2]. In Chhattisgarh’s tribal districts, the 

prevalence of undernutrition remains alarmingly high – recent 

surveys indicate that over one-third of children are under- 

weight and nearly one-quarter suffer wasting (low weight- 

for-height) [3]. Severe Acute Malnutrition (SAM), defined 

by extreme wasting (weight-for-height < −3 SD), is a life- 

threatening condition that amplifies child mortality risk by 9– 
11 times [4]. Even with clinical treatment, case fatality rates 
for SAM range from 3% to 35% [5]. Early identification 

and treatment of SAM are therefore paramount to reduce 

preventable deaths [6]. However, timely detection in resource- 

constrained settings is challenging due to measurement er- 

rors, manual data handling, and delayed reporting. Current 

growth monitoring at Anganwadi Centres (rural child care 

centers in Chhattisgarh, India) relies on community health 

workers manually measuring weight and height and recording 

data on paper and feeding to PoshanTracker mobile app 

[7]. This process is error-prone and inconsistent, leading to 

missed or false diagnoses. Studies have found that frontline 

workers often misclassify nutritional status due to incorrect 

measurements or plotting errors [8]. For example, reliance 

on just MUAC tapes or visual assessment can result in high 

false negatives, missing children who are actually severely 

malnourished. Moreover, administrative pressures can skew 

reporting – workers may under-report SAM cases to meet 

targets or over-report to secure resources [9]. In India, the 

Poshan Tracker (PT) serves as a real-time tool for monitoring 

nutritional outcomes; however, concerns around data quality 

remain. As of 2025, PT recorded only around 7% of children 

as wasted [10], significantly lower than the approximately 

17% prevalence reported in independent assessments such as 

NFHS-5 [2]. This indicates significant under-reporting. These 

challenges result in critical delays—children falling into SAM 

may go unnoticed until severe complications arise. 

To address these gaps, there is an urgent need for 

technology-enabled solutions that can improve the accuracy, 

timeliness, and coverage of malnutrition screening in remote 

areas [11]. Recent advances in the Internet of Things (IoT) 

and low-cost sensors offer a pathway to automate anthro- 

pometric measurements, minimizing human error. Similarly, 

emerging wireless technologies like LoRa (Long Range) can 

enable data connectivity in villages lacking cellular networks 

[12]. Battery-powered IoT devices with LoRa can operate 

for long durations and transmit data over kilometers with 
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minimal infrastructure [13]. Another key opportunity is ap- 

plying machine learning to growth data for early warning 

predictions. Instead of reacting to malnutrition after a child is 

already SAM, predictive models (e.g., time-series forecasting 

of weight/height) can identify at-risk children before they cross 

the SAM threshold, allowing proactive interventions [14]. 

In this paper, we propose an integrated LoRa-assisted IoT 

framework for real-time SAM identification and forecasting 

in remote tribal Anganwadi Centres. Our contributions are: 

(1) Design of a low-cost IoT hardware system (sensor nodes 

and Raspberry Pi gateway) for automated weight and height 

measurement with automatic child identification with minimal 

human input, ensuring accurate and consistent anthropometry; 

(2) Implementation of a LoRa wireless network and offline 

data storage (SQLite) to enable reliable data collection in 

areas with little or no network coverage; (3) Development of 

an on-site software pipeline to calculate WHO z-scores for 

Weight-for-Age (WFA), Height-for-Age (HAZ), and Weight- 

for-Height (WFH) in real-time, instantly flagging SAM cases 

according to WHO criteria; (4) Integration of a time-series 

forecasting module using ARIMA, SARIMA, and LSTM 

models to predict growth trends (weight/height) for each child 

over the next few months, and an ensemble approach to 

improve forecast accuracy; (5) Field evaluation in 4 tribal 

villages of Bastar district, Chhattisgarh, demonstrating the 

system’s performance (measurement accuracy, communication 

range, classification and prediction outcomes) and practical 

benefits such as reduced workload and improved SAM case 

identification. We also discuss how this framework can be 

scaled and integrated with existing government programs (like 

POSHAN Abhiyaan’s Poshan Tracker) to strengthen nutri- 

tional surveillance and child health management in under- 

served communities. 

The rest of the paper is organized as follows: Section II 

reviews related work in digital malnutrition monitoring and 

IoT healthcare in low-resource settings. Section III describes 

the proposed methodology including system architecture, data 

processing, and forecasting techniques. Section IV details the 

hardware/software implementation and deployment. Section V 

presents results from field tests and discusses the findings. 

Finally, Section VI concludes the paper with insights on 

impact, limitations, and future scope. 

 

II. RELATED WORK 

Malnutrition monitoring has seen various digital innovations 

in recent years. Mobile health (mHealth) applications have 

been introduced to improve growth monitoring data [15]. For 

example, automated 3D imaging technologies, such as those 

evaluated by Leidman et al. (2022), have demonstrated the 

potential of smartphone-based systems to accurately capture 

child anthropometric data and support AI-driven malnutri- 

tion detection in low-resource settings [16]. This approach 

addresses the problem of manual measurement errors by 

capturing accurate anthropometric data via computer vision. 

However, smartphone-based solutions still require network 

connectivity to upload data and can be challenging to deploy 

in areas with intermittent power or no cellular coverage. 

Another line of work focuses on portable digital devices for 

anthropometry. Soller et al. (2023) note that UNICEF has 

called for accelerated development of digital height/length 

measurement tools to improve child growth surveillance [17]. 

Various prototypes – from ultrasonic height sensors to smart 

scales – have been evaluated. In a recent scoping review, 

only 6 out of 12 tested devices met UNICEF’s ideal accuracy 

criteria, highlighting room for improvement in measurement 

precision [17]. Our work contributes to this area by utilizing 

low cost yet accurate sensors (load cell and ultrasonic module) 

and demonstrating that with proper calibration, clinical-grade 

accuracy is achievable even in field conditions. 

Several studies have implemented IoT systems for nutrition 

or health monitoring in low-resource settings. A recent study 

by [18] developed an IoT-based system using load cells and 

ultrasonic sensors to measure children’s weight and height, 

achieving high accuracy (99.8% for weight, 98.6% for height). 

While effective in data acquisition and transmission via Wi- 

Fi, the system lacks forecasting or decision-support features, 

which our work addresses through edge-based predictive ana- 

lytics. Their system automated data upload to a web appli- 

cation for analysis. This indicates that inexpensive sensors 

can yield reliable anthropometric data, consistent with our 

findings. A recent [19] study in Indonesia developed an e- 

Growth Chart Monitoring System (e-GCMS) using Time-of- 

Flight sensors and load cells, achieving over 99% accuracy in 

measuring children’s height and weight. The system automates 

anthropometric classification based on age and gender, and 

provides outputs via a mobile and web interface. Unlike our 

framework, however, it does not incorporate real-time fore- 

casting or edge analytics for early malnutrition risk detection. 

Low-power wide-area networks like LoRa and NB-IoT are 

increasingly explored for rural healthcare IoT. Dimitrievski 

et al. (2021) proposed a rural healthcare IoT architecture 

using LoRa communication and fog computing to bridge 

connectivity gaps [12]. A recent study [20] highlighted the 

use of LoRa in for rural and remote monitoring, emphasizing 

its capability for wide-area coverage. Notably, the system 

achieved a tested transmission range of up to 3.7 km, demon- 

strating its feasibility for long-distance communication. This 

supports our choice of LoRa for reliable data transmission 

in low-network tribal settings. LoRa’s long range and low 

energy consumption make it ideal for battery-operated devices 

in villages. Our design builds on this by creating a star network 

of Anganwadi sensor nodes sending data to a Pi-based LoRa 

gateway, which proved robust in the field (100% data success 

over 350 m). Dra˘gulinescu et al. [21] proposed a LoRa-based 

Medical IoT architecture tailored for homecare and hospital 

services, emphasizing low-power, long-range communication 

for real-time health monitoring. Their testbed demonstrated 

the feasibility of integrating LoRa technology into medical 

applications, addressing challenges like latency and data reli- 

ability. our work specifically tailors it to nutrition monitoring 

and demonstrates integration with edge analytics. 

Using machine learning for malnutrition prediction is an 

emerging research area. Begashaw et al. (2025) applied 

deep learning (LSTM-FC networks) on longitudinal child 

growth data in Ethiopia to classify and predict nutritional 
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status transitions [14]. Their LSTM model achieved 93% 

accuracy in predicting if children would remain normal, be- 

come stunted/wasted, etc., over a 15-year cohort. While such 

complex models perform well with large datasets, in on-the 

ground deployments we often have sparse data (e.g., monthly 

measurements) and need faster, more interpretable methods. A 

recent review by Kontopoulou et al. (2023) compared ARIMA 

with machine learning and hybrid models for time series 

forecasting. They found that while ARIMA models are effec- 

tive for linear patterns, machine learning models like LSTM 

and SVR outperform them in capturing complex, nonlinear 

trends. Hybrid approaches combining ARIMA with machine 

learning techniques often yield superior predictive accuracy, 

making them suitable for applications such as malnutrition 

risk forecasting [22]. A study by Zhang et al. (2022) com- 

pared ARIMA and LSTM models for forecasting hemorrhagic 

fever incidence in China across monthly, weekly, and daily 

time scales. The findings revealed that ARIMA outperformed 

LSTM in monthly and weekly forecasts, while LSTM showed 

superior performance in daily forecasts, particularly when 

using rolling forecasting methods. This suggests that model 

selection should consider the specific time scale of the data. 

In our research, we apply similar comparative analyses to mal- 

nutrition risk forecasting, aiming to identify the most effective 

model for short-term predictions in resource-limited settings 

[23]. We incorporate both approaches: ARIMA/SARIMA as 

strong statistical baselines and LSTM to explore nonlinear 

temporal patterns. Ospina et al. (2023) applied ARIMA models 

to forecast COVID-19 cases in Recife, Brazil, demonstrat- 

ing strong short-term predictive performance. However, the 

model’s accuracy diminished over longer forecasting horizons, 

highlighting limitations in capturing complex pandemic dy- 

namics. This underscores the potential benefit of integrating 

ARIMA with machine learning techniques to enhance long- 

term forecasting accuracy in health-related applications [24]. 

We further contribute by introducing an ensemble model that 

combines ARIMA, SARIMA, and linear regression forecasts 

for child growth prediction. 

Despite these advances, there is still a lack of integrated 

solutions that tie together automated data collection, reliable 

rural connectivity, and predictive analytics for malnutrition. 

Many past studies addressed one aspect (e.g., digital measuring 

devices or growth prediction in retrospective data) but did 

not implement a full end-to-end system in the field. We aim 

to fill this gap by demonstrating a complete framework – 

from sensors to insights – validated through deployment in 

actual Anganwadi Centres. This work thus builds upon related 

efforts and provides a practical blueprint for IoT-driven SAM 

monitoring in remote settings. 

 

III. PROPOSED METHODOLOGY 

A. System Architecture Overview 

Our proposed framework consists of three main layers – 

Data Acquisition, Edge Processing, and Communication – 

arranged to function reliably in remote environments with 

limited infrastructure. Fig. 1 illustrates the overall system 

architecture. At Anganwadi Centre, a Sensor Node handles 

 

 

Fig. 1. Proposed IoT system architecture for SAM monitoring 

 

 

data acquisition, measuring a child’s weight and height auto- 

matically. This node is built on a NodeMCU (ESP8266) micro- 

controller connected to a load cell (weight sensor with HX711 

amplifier) and an HC-SR04 ultrasonic sensor for height. 

When a child stands on the platform, the NodeMCU captures 

the weight and height readings, and also triggers a camera 

to capture the child’s face for identification. The raw data 

(weight, height, child ID) are transmitted via LoRa wireless to 

a central Gateway device. The gateway is a Raspberry Pi 3B+ 

equipped with an LoRa transceiver (SX1278) to receive sensor 

data. The Raspberry Pi serves as an edge computing hub – it 

stores the data locally in an SQLite database, runs algorithms 

to compute z-scores and make predictions, and provides a 

user interface (dashboard) for Anganwadi workers to view 

results. In our deployment, the Pi also periodically syncs the 

data to a cloud server, though all core functions can operate 

offline. This architecture minimizes dependence on continuous 

internet and ensures data is not lost during network outages. 

The use of LoRa allows coverage of dispersed hamlets; a 

single Pi gateway in one village can collect data from multiple 

surrounding Anganwadi sensor nodes within a ∼350 m radius. 

The system is designed with modular components so that 

additional sensor nodes (or other health sensors) can be added 

to the network easily. 

 

B. Automated Data Capture and Child Identification 

To eliminate manual measurement errors, we employ cal- 

ibrated electronic sensors for anthropometry. The weight is 

measured using a platform scale constructed with four 50 kg 

load cells mounted under a rigid plate to form an electronic 

weighing scale. The analog signals from the load cells are 

amplified by the HX711 and read by the NodeMCU’s ADC. 

The height is measured by an ultrasonic sensor (HC-SR04) 

placed at a fixed height (approx. 7 ft) on a vertical stand. 

Both sensors are calibrated against standard instruments (a 

set of weights and a measuring tape) to ensure accuracy. In 

testing, our calibration achieved an error under ±50 g for 
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weight and ±0.3 cm for height, meeting clinical accuracy 

requirements. Each measurement cycle takes about 30–45 

seconds. As soon as the child’s weight stabilizes on the scale 

and the ultrasonic returns a steady reading, the NodeMCU 

records the values. Simultaneously, a facial recognition sub- 

module handles child identification. A Pi Camera (5 MP) 

or USB webcam is connected to the Raspberry Pi and is 

triggered by the NodeMCU (via a LoRa message or Wi- 

Fi/MQTT in prototype stage) to capture the child’s face. The 

Pi then runs a lightweight face recognition algorithm (LBPH 

– Local Binary Patterns Histograms) using OpenCV to match 

the face against the local database of enrolled children. This 

provides the child’s identity (or a unique ID) to tag the 

measurements. Facial recognition automates identity logging, 

avoiding reliance on written names or IDs. The identified 

child’s data (ID, weight, height, timestamp) is then logged. 

In our field runs, the automated identification was ∼97% 

successful. By automating measurements and identification, 

the system minimizes human intervention. The role of the 

Anganwadi worker is mainly to position the child on the 

device, after which data recording is automatic. This tackles 

the issue of measurement inconsistency and data forgery, 

ensuring that each child’s record is captured objectively and 

accurately in realtime. 

 

C. WHO Z-score Classification 

The Raspberry Pi processes incoming measurements to 

compute standardized z-scores for nutritional status assess- 

ment. We use the WHO Child Growth Standards as reference 

[25]. For each measurement, three indices are calculated: 

Weight-for-Age (WFA) z-score, Height-for-Age (HAZ) z- 

score, and Weight-for-Height (WFH) z-score. The z-score 

indicates how many standard deviations a child’s measurement 

is above or below the WHO median for a healthy child of that 

age/sex (for WFA, HAZ) or height/sex (for WFH). A z-score 

< −3 is classified as severe malnutrition in that metric. In 

implementation, we utilize WHO reference tables (L, M, S 

values for each age/height) stored locally [26]. 

In our case, since MUAC is not measured, we use WFH as 

primary criterion for SAM. The dashboard will prominently 

alert ”SAM” cases in red, indicating that the child is severely 

wasted and needs urgent attention (medical referral or nu- 

tritional rehabilitation). Health workers can trust these alerts 

because the underlying data is precise; this helps overcome 

issues of missed SAM cases due to incorrect data recording 

or intentional under-reporting. All computed indices and clas- 

sifications are stored in the local database, and can be later 

synced to a central server for program monitoring. 

 

D. Growth Trend Forecasting 

A novel aspect of our framework is forecasting each child’s 

growth trajectory to anticipate malnutrition risk. Rather than 

solely relying on current status, we implemented a time- 

series forecasting module for weight and height. We collected 

historical data of children across 4 AWC centers as the basis. 

For each child, we have a sequence of weight and height 

measurements. Our aim is to predict the next few months 

of weight and height, and from that infer if the child’s 

WFH, WFA, HFA z-score is likely to drop. We explored 

three modeling techniques: ARIMA (Autoregressive Integrated 

Moving Average), SARIMA (Seasonal ARIMA), and LSTM 

(Long Short-Term Memory neural network) [27]. 

Each model produces forecasts for the next 4 months. These 
predicted weights and heights are then converted to predicted 

z-scores [29]. If any forecast shows WFH z < −3, we mark 

the child as ”at risk of SAM” in that future timeframe. For 
example, if a child’s weight trend is declining, the system 

might forecast that two months later the child will cross into 

SAM category, triggering a preventive alert. This approach 

enables proactive interventions (such as nutritional supple- 

ments or medical check-ups) before the child becomes severely 

malnourished. 

To improve reliability, we implemented an ensemble fore- 

cast for weight. We observed that ARIMA and SARIMA 

often gave similar predictions, while LSTM sometimes di- 

verged. The ensemble takes a simple average of the ARIMA, 

SARIMA, and Linear Regression model predictions (we ex- 

cluded LSTM from the ensemble in final results due to its 

high error). This ensemble smooths out model-specific biases 

[28]. For instance, if ARIMA slightly underestimates a weight 

rebound and linear regression overestimates it, the average 

may be closer to true. 

The output is integrated into the dashboard: children at risk 

of SAM in the next 1–4 months are listed, and their pro- 

jected weight/height curves can be viewed [29]. This provides 

Anganwadi workers and supervisors a foresight tool. To our 

knowledge, this is one of the first implementations of real-time 

growth forecasting at the point of care in rural Anganwadi 

settings. 

 

IV. SYSTEM IMPLEMENTATION 

A. Hardware Implementation 

Anganwadi Centre was equipped with an IoT sensor node 

and a gateway unit [18] [19]. The sensor node components are 

low-cost and easily available: a NodeMCU ESP8266 micro- 

controller, HX711 ADC module, four 50 kg strain-gauge load 

cells, one HC-SR04 ultrasonic sensor, and LoRa transceiver 

(433 MHz) [36]. The load cells are mounted under a 50 cm × 

50 cm weighing platform made of toughened glass. They form 
a Wheatstone bridge wired to the HX711 on the NodeMCU 
board. The ultrasonic sensor is fixed on an adjustable pole. 

 

B. During field deployment 

During field deployment, we set up the devices as follows: 

The weighing platform with sensor node was placed on flat 

ground inside the Anganwadi. The ultrasonic sensor was 

calibrated by measuring a known height to adjust for any 

mounting angle offset [37]. The NodeMCU unit which is 

equipped with a rechargeable battery, collects the readings 

from the height and weight sensors and then sends them 

to the raspberry pi for further processing of data through 

MQTT protocol over WiFi interface [30]. The raspberry pi is a 

computing node which receives the data from NodeMCU and 

then identifies the child details stored in the local database 
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Fig. 2. Process flow chart for IoT system and SAM monitoring 

 

 

with the help of a facial recognition program and a camera 

(image capturing device) [31]. Once the child is identified, 

the weight and height measurements are stored in the records 

of that child in the local database present in the raspberry pi 

[32]. 

Also, the measurements are verified against standard growth 

charts provided by WHO to check for the status of Severely 

Acute Malnutrition (SAM) and if found to be so, prompt 

messages are generated accordingly. After processing the data 

locally, the data of the child is also sent to the cloud database 

using the Long Range Wireless technologies so as to ensure 

the delivery of timely and rich data even in the areas with low 

network coverage [33]. 

 

C. Field Deployment and User Training 

We tested the system in four tribal Anganwadi Centres of 

Bastar, selected in consultation with local ICDS officials. Fig. 

2 illustrates the process flow chart for IoT system and SAM 

monitoring. Before deployment, we conducted a training ses- 

sion with Anganwadi workers, demonstrating how to operate 

the device (essentially, ensure the child stands properly and 

wait for the result). The interface was designed to be mostly 

automatic. 

Through the system we recorded the data for 48 children. 

We concurrently took manual measurements as a reference to 

evaluate accuracy. The children’s caregivers and the Angan- 

wadi workers were enthusiastic about the automated system, 

as it will reduce the tedious process of writing down readings 

and checking growth charts manually [34]. 

 

D. Integration with Government Systems 

Although our deployment was a pilot, we structured the data 

format to align with Poshan Tracker [7]. Each child’s unique 

ID was mapped to their statewide Anganwadi registration ID. 

This means our data could be uploaded to the database if 

needed. We also envisioned that our system could complement 

the POSHAN Abhiyaan initiative by providing more reliable 

ground data – for instance, by addressing the underreporting 

issue noted where data showed only 7.07% wasting compared 

to actual ∼15% in surveys [2]. 

In the next section, we present the results from the field 

evaluation, including measurement accuracy, network perfor- 

mance, and the outcomes of the SAM classification and 

forecasting, along with a discussion on the impact observed. 

 

V. RESULTS AND DISCUSSION 

A. Measurement Accuracy and Efficiency 

One of the primary goals was to improve the accuracy 

of anthropometric measurements over traditional methods. 

We compared the weight and height readings from our IoT 

device against those taken using standard analog instruments, 

with a medical scale and stadiometer as reference [35]. 

Table I summarizes the accuracy results. During field test- 

ing across Anganwadi Centres, it was observed that tradi- 

tional child growth monitoring tools—including Salter-type 

weighing machines and manual height recording methods— 

exhibited significant limitations in accuracy. The Salter-type 

weighing machines recording, especially spring-based models, 

demonstrated a practical accuracy of only ±0.1 to ±0.3 kg. 

This was primarily due to errors in visual reading, manual 
rounding off or mistakes in handwritten entries [36]. Similarly, 
child height measurements taken using manual tapes or wall- 

mounted stickers were prone to inconsistent placement, and 

observer error. In many instances, variation of ±0.5 to ±1.0 

cm was recorded. Such discrepancies—when combined with 
errors in weight—can lead to misclassification of SAM/MAM 
status when plotted against WHO growth charts. 

In contrast, IoT-based system, which automates both weight 
and height measurements, maintained an accuracy of ±0.05 

to ±0.1 kg for weight and ±0.2 to ±0.3 cm for height. This 

system reduces human dependency, eliminates manual errors, 

and provides real-time digital records—thereby enabling more 
reliable classification of nutritional status in children [37]. Im- 
portantly, the time per measurement was reduced – on average, 

it took ∼45 seconds per child with our system (mostly waiting 

for the child to stand still), whereas the manual method took 

∼3 minutes (weighing (in analog/salter machine), measuring 

length board, data recording/manual entry). This amounts to a 

∼50% reduction in time, which during a session of 30 children 

translates to significant labor saving. In practice, Anganwadi 
workers noted that the automated system can simplify their 

work, allowing them to focus more on counseling mothers 

rather than paperwork. This addresses the issue of workload 

fatigue that often leads to errors in manual reporting [38]. The 

automation also prevents any intentional data fudging – each 

entry is time-stamped and comes directly from the device, 

building trust in the data integrity. 

The table highlights that our low-cost setup can closely 

approach clinical instrument accuracy, validating the use of 

such IoT devices for serious health assessments. 

 

B. LoRa Communication Performance 

In our field deployment, we were able to successfully re- 

ceive all child data records without any loss. LoRa performed 

reliably, and we achieved stable data transmission up to a 
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TABLE I 
COMPARISON OF MEASUREMENT ACCURACY AND TIME 

TABLE II 
FORECASTING MODEL PERFORMANCE FOR WEIGHT AND HEIGHT 

(PROPOSED IOT SYSTEM VS. MANUAL VS. CLINICAL REFERENCE)   

  Model 
 Metric IoT System Manual (Anganwadi)  

 
MAE 

Weight 

RMSE R2 
Height 

MAE RMSE R2 
Weight Accuracy ±0.05 to ±0.1 kg ±0.1 – ± 0.2 kg 

Height Accuracy ±0.3 cm ±0.7 cm 

   (kg)  (kg)   (cm)  (cm)   

ARIMA 0.283 0.405 0.855 1.073 1.733 0.787 

 

 

 Ensemble (Avg) 0.268 0.364 0.883 1.160 1.757 0.781  

 

distance of 350 metres between the node and the gateway. 

These results underscore that LoRa is a viable option for 

last-mile connectivity in public health IoT, echoing findings 

from other rural IoT studies [12]. For scalability, one could 

envisage a network of LoRa gateways ferrying data from 

dozens of Anganwadis to a block-level center that has internet, 

thereby creating a multi-hop data pipeline entirely over radio 

frequencies that bypass unreliable cellular networks. 

 

C. SAM Identification Outcomes 

A core metric of success is whether the system improved 

the identification of SAM children. Our system identified 

3 instances of SAM. Such cases demonstrate how precise 

data capture and computation can prevent false negatives and 

ensure no child slips through without care. Conversely, we 

did not observe any false positives. The impact of these 

identifications was notable: all identified SAM children could 

be referred to the Nutrition Rehabilitation Center (NRC) as per 

protocol [39]. This early action can be life-saving, illustrating 

the value of real-time monitoring. 

Another benefit was transparency – since data was digitally 

recorded, supervisory officials trusted it more. This suggests 

our framework can be an objective tool to strengthen MIS data 

quality [40]. 

 

D. Forecasting and Early Warning Results 

We took the past months data from the records kept by 

Anganwadi workers, covering 100 children across 4 centres. 

This historical data was used as the base for our analysis. We 

forecasted the next 4 months. Table II presents the forecasting 

accuracy metrics for weight and height predictions by each 

model (averaged across all children). We use Mean Absolute 

Error (MAE) and Root Mean Square Error (RMSE) in kg 

for weight and cm for height, as well as average R2 across 

children for goodness of fit. The ARIMA model achieved 

the best performance for height prediction (MAE ∼1.073 cm, 

R2 = 0.787) and very solid performance for weight (MAE 
0.283 kg, R2 = 0.855) [41]. The SARIMA was a close 

second, slightly higher error [42]. Linear Regression (a simple 
linear extrapolation per child) was surprisingly competitive, 
beating ARIMA on one or two cases where growth was almost 

linear. The LSTM model underperformed, with MAE ∼1.24 

kg for weight – in fact, LSTM often predicted a flat or 

slightly declining trend and missed any upticks (likely due 

to overfitting the small sample) [43]. The ensemble model 

(an average of ARIMA, SARIMA, and linear) gave the best 

weight forecasts (MAE 0.268 kg, RMSE 0.364 kg), marginally 

 

better than ARIMA alone, and comparable performance to 

ARIMA on height. We found that for children with steady 

growth, all models did well, but for those with a sudden drop 

or increase (e.g., illness causing weight loss then recovery), 

ARIMA tended to smooth it out and delay the recovery in 

prediction. LSTM sometimes predicted a drop where it didn’t 

happen (false alarm). The ensemble moderated these effects. 

Qualitatively, what matters is whether the models correctly 

predict a child becoming SAM. Given the small sample, 

we interpret that ARIMA is a reliable choice for short-term 

prediction of undernutrition risk, aligning with literature that 

ARIMA works well for time-series with gradual trends [41]. 

As seen, the LSTM performed poorly (even with some 

hyperparameter tuning, small data is a limiting factor), so 

in deployment we rely on the ensemble of ARIMA-family 

models. The ensemble’s slight improvement in weight R2 to 

0.883 indicates it captures variance better, likely by balancing 

biases (some children’s growth was linear, some slightly 

nonlinear). Another interesting point: height prediction was 

generally less error in absolute terms but also less R2, because 

children’s height changed very little month to month (often 0 

or 1 cm), so even a 1 cm error can look large relative to 

variance. In practice, missing a height by 1 cm has minor 

effect on classification compared to missing weight by 0.5 kg, 

so we prioritized weight accuracy. Ultimately, the forecasting 

module provided an additional 1–2 months lead time for about 

half of the SAM cases. This is a significant gain in public 

health intervention terms; for example, if we know a child is 

likely to become SAM next month, we can start supplemental 

feeding now to possibly avert it. They also highlight that 

even simple predictive analytics at the edge can transform 

nutritional surveillance from reactive to proactive. 

 

E. Practical Impact and Feedback 

The integrated system had several tangible impacts. Angan- 

wadi workers reported that automated recording could save 

their time that was earlier spent on consolidating records and 

reporting upwards [44]. When parents saw the digital readings 

and clear growth charts on the screen, it gave them more 

confidence in the measurements. This, in turn, made them take 

nutrition advice more seriously. The system helped strengthen 

counselling efforts by providing workers with simple, reliable 

data they could easily show and explain [45]. 

From the government stakeholder perspective, the ICDS 

supervisors were very interested in scaling this to more centers 

if budget allows, as it could feed into the POSHAN Abhiyaan 

dashboard with high-quality data [46]. Our cost per unit was 

Z-score classification 100% correct 100% correct SARIMA 0.290 0.420 0.845 1.236 2.003 0.715 
Time per child 45 s ∼3 min Linear Regression 0.335 0.478 0.798 1.705 2.786 0.449 

 measurement & recording  LSTM (RNN) 1.240 1.481 -0.899 5.636 7.216 -2.503 
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Fig. 3. IoT Node and measurement snapshot at Anganwadi 

 

 

approximately 20000 (NodeMCU node ∼2k, Raspberry Pi 

kit ∼5k, plus miscellaneous). This is quite low compared to 
typical digital device with machine learning capability. One 

challenge encountered was device maintenance in the field – 

e.g. one Pi crashed due to heat one day; adding a heatsink 

solved it. Also, training of new Anganwadi staff would be 

needed for replication. These are manageable with proper 

documentation and periodic technical support visits. 

In summary, the pilot deployment demonstrated that our 

LoRa-assisted IoT framework can significantly improve SAM 

monitoring in remote areas. It directly addresses the key issues: 

measurement errors are minimized, data recording is real- 

time and digital (solving timeliness and accuracy issues in 

MIS), and connectivity barriers are bypassed by LoRa. The 

forecasting component, while experimental, showed the value 

of adding predictive analytics to target interventions. This 

combination of IoT and AI in a field-ready package is a step 

towards modernizing rural health services at the last mile. 

VI. CONCLUSION 

We presented a comprehensive IoT-based framework for 

real-time malnutrition monitoring and prediction in remote 

tribal Anganwadi centres. By integrating accurate electronic 

anthropometric sensors, automated identification, and LoRa 

communication, the system overcomes longstanding chal- 

lenges of manual error and poor connectivity. The deployment 

in Chhattisgarh, India validated that low-cost hardware can 

achieve near clinical accuracy and substantially streamline 

growth monitoring workflows. Crucially, the framework’s on 

device intelligence – computing WHO z-scores and running 

forecasting models – enables immediate identification of SAM 

cases and even advance warning of children at risk of SAM. 

This shifts the paradigm from reactive to preventive care in 

nutrition management, which can save lives through earlier 

interventions. 

The research also shows the feasibility of deploying edge 

machine learning in rural healthcare contexts. While sophisti- 

cated deep learning models require large data, simpler models 

like ARIMA, when combined with IoT data capture, proved 

effective in forecasting short-term nutritional trends. The en- 

semble approach yielded robust predictions, illustrating how 

AI can enhance decision support for health workers even in 

low-resource settings. 

Our framework is designed with scalability in mind. The 

modular architecture (multiple sensor nodes feeding a gateway, 

which in turn can connect to cloud) means an entire district’s 

Anganwadi network could be covered with a few hundred 

such units. Since the system uses open IoT standards and 

opensource software, it can be maintained and expanded by 

local technical teams. Integration with government systems 

(Poshan Tracker) is straightforward via data APIs or periodic 

batch uploads. This would allow authorities to have a real- 

time pulse of ground nutrition status and respond swiftly to 

emerging hotspots. 

Future work: We plan to enhance the system by incor- 

porating MUAC measurement (using a small tape sensor or 

computer vision on the arm), as MUAC is a key SAM indicator 

for 6–59 months age. We also aim to refine the forecasting 

by including more exogenous factors (seasonal illness data, 

food security information) to improve predictions. Another 

extension will be a mobile app interface for supervisors to 

remotely view the dashboard of each center and for caregivers 

to track their child’s progress at home. Finally, a larger- 

scale trial is needed to statistically evaluate impact on health 

outcomes – e.g., did early warnings from the system lead 

to fewer children progressing to severe malnutrition over 

time compared to control areas. We are working with local 

authorities to initiate such a study across more villages. 

In conclusion, this work demonstrates a viable and im- 

pactful solution to a critical healthcare problem using an 

interdisciplinary engineering approach. The LoRa-assisted IoT 

framework for SAM monitoring has shown measurable im- 

provements in data quality, timeliness, and ultimately in the 

identification and management of malnourished children. By 

empowering frontline health workers with better tools and 

information, such innovations can markedly strengthen public 

health initiatives like POSHAN Abhiyaan. We envision that 

adoption of similar IoT frameworks could herald a new era of 

evidence-based, proactive nutrition interventions in rural com- 

munities, bringing us a step closer to the goal of eliminating 

child malnutrition. 
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