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• Introduction 

The mass attenuation coefficient or mass extinction coefficient of the volume of a material 

characterizes how easily it can be penetrated by a beam of light, particles or other energy or 

matter. In addition to visible light, mass attenuation coefficient can be defined for other 

electromagnetic radiation (such as X-rays) or any other beam that attenuates [1]. The SI unit of 

mass attenuation coefficient is the square meter per kilogram [2, 3]. The mass attenuation 

coefficient can be thought of as a variant of absorption cross section where the effective area is 

defined per unit mass instead of per particle. The attenuation coefficient is defined as the 

probability of a radiation interacting with a material per unit path length [4]. Linear attenuation 

coefficient for a material depends on the incident photon energy, the atomic number and the 

density of material [5]. 

Effective atomic number (Zeff) has two different meanings: one that is the effective nuclear 

charge of an atom and one that calculates the average atomic number for a compound or mixture 

of materials both are abbreviated Zeff. As stated by Hine [6], for gamma photon interactions a 

single number cannot represent the “effective” atomic number of a multi element material, 

composed of several elements, uniquely across the entire energy region. Instead, one defines the 
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so-called effective atomic number, Zeff. for each of the different processes, by which   X-rays or 

gamma rays [7] can interact with matter, the various atomic numbers in the material have to be 

weighted differently. In general, the effective atomic number is large for inorganic compounds 

and metals while it is small for indicator of organic substances. Among the parameters 

representing radiation interaction with materials, it should be noted that Zeff is one of the most 

convenient parameter [8]. The other important quantity is the effective electron number or 

electron density and it is defined as the electrons per unit mass of the absorber [9]. 

The Berger and Hubbel [10] developed a computer program XCom, for calculating mass 

attenuation coefficients and cross-section. For any element, compound and mixture at the 

energies 1 keV to 100 GeV. This is well-known and widely used program was enhanced and 

transformed to the windows platform by Gerward et al [11] and it is known as WinXCom. The 

effective atomic number of organic molecules like radioactive isotopes and organic liquid 

scintillators play an important role in the biological and pharmaceutical field [12, 13]. The mass 

attenuation coefficients, effective atomic cross sections [14, 15], effective atomic numbers and 

electron densities of some halides were determined by Shivalinge Gowda [16]. The total mass 

attenuation coefficients µ/ρ, of some alkali halides were determined for selected photon energies 

in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure 

germanium detector. This prompted us to study the mass attenuation coefficients, effective 

atomic numbers and electron densities of selected halides such as CuCl, RbI and CsBr. I have 

used direct method to calculate Zeff among different methods such as Interpolation method, Auto 

Zeff method [17] and Single value XMuDat computer program [18, 19]. 

 In the present work, mass attenuation coefficients and interaction cross-sections of the 

elements and materials were generated using the computer program WinXCom. The effective 

atomic number and electron densities have been calculated for Alkali halides CuCl, RbI and 

CsBr for all photon interactions [coherent, incoherent, photoelectric, pair production, total 

photon interaction (with coherent and incoherent)] in the energy range 1 keV-100 GeV using 

WinXCom Program. The variations of effective atomic number and electron density with energy 

are shown graphically for all total photon interaction. 

 

2. Theoretical basis 

The calculation methods for the effective atomic numbers electron density and Kerma of alkali 

halides are described in the following subsections. 

2.1 Mass attenuation coefficients 

The total photon mass attenuation coefficient   for a chemical compound or mixture was 

calculated using the WinXCom and the following ‘mixing rule’ [20] . 

   (1) 

where and are the photon mass attenuation coefficient and the weight fraction of the ith 

constituent element in the compound, respectively. 
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          (2) 

where is the ith element's atomic weight and is the number of formula units in ith element [21]. 

 

 

2.2 Effective atomic numbers 

Calculation of the effective atomic numbers Zeff, PI of the low-Z materials for total photon 

interaction was carried out by using practical formula. The formula is given below [22]: 

  (3) 

where is molar fraction in the mixture/compound,   is linear attenuation coefficient,   is density,   

is mass attenuation coefficient,   is atomic weight,   is atomic number and the ratio,   between the 

atomic mass and the atomic number is approximately constant. 

2.3 Electron density 

The effective electron density Nel (number of electrons per unit mass) is derived as: 

            (4) 

where <A> average atomic mass of the compound. 

Theoretical values for the mass attenuation coefficient can be found in the tabulation by Hubbell 

and Seltzer [23]. Instead of interpolating tabulated values and using the mixture rule, some 

computer programs such as WinXCom can save a lot of manualworkando 

3. Results and discussions 

3.1 Mass attenuation coefficients 

Mass attenuation coefficient and attenuation cross-section data are available in photon 

energy range of 1 keV to 100 GeV in the XCOM program which has been transformed to 

windows operating system software WinXCom [26] . Effective atomic numbers are derived by 

calculation of the mass attenuation coefficients [18] and atomic cross-sections of the elements of 

compound/mixture. The elemental compositions of the high-Z materials [27] used in this study 

are given in Table 1. For total photon interaction process (with coherent), the variation of mass 

attenuation coefficient against optical energy of the compounds obtained by WinXCom is shown 

in Fig. 1. The variation of mass attenuation coefficient is different for the alkali halides at various 

energies. Photoelectric absorption, Compton scattering and pair production are the three 

dominant attenuation mechanisms, as shown in the graph. Photoelectric effect is the main 
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interaction process from 1 keV upto 5 keV, 50 keV and 200 keV for CuCl, RbI and CsBr 

respectively. At intermediate energies Compton scattering is interaction dominant process. At 

high energies above 100 MeV pair production will become the dominating interaction process 

[28]. 

 

 

 

 

 

Table 1 The molecular formula for Alkali halides. 

 

S.NO. 
Name of 

Compound 

Molecular 

Formula 

1. Calcium Chloride CuCl 

2. Rubidium iodide RbI 

3. cesium  Bromide CsBr 

 

 

FIG. 1 Variation of photon mass attenuation coefficient  of alkali 

halides with photon energy for total photon interaction (with coherent). 

 

 

3.2 Effective atomic number and electron density 

a) Total photon interaction (with coherent and incoherent) 

 

  



Effective atomic number and electron densities of some alkali 

halides for wide energy region by using mass attenuation 

coefficients 

R. B. Konda1, Shivaleela B2 and 

Shivraj G Gounhalli1 

  
 
 
  
 

Cuest.fisioter.2025.54(1):824-836                                                                                                            828 

 

 
(a) 

 
(b) 

 
(a) 

 

 
(b) 

FIG. 2 Energy dependence of Zeff and Nel, of alkali halides for total photon                                                                           

interaction (a) with coherent and (b) with incoherent. 

 

 

 

The Zeff and Nel of alkali halides were calculated using mass attenuation coefficients of 

chemical composition of the given molecule or compound. From Fig. 2 (a & b) it can be seen 

that the Zeff and Nel  are mainly dominated by different partial photon interaction processes [29]. 

The value of average effective atomic number <Zeff> and electron density <Nel>, have been 

shown in the Table 2, 3 and 4. The Z dependency of total atomic cross–sections explains all 

changes, leading to effective atomic numbers such as Z4-5 for photoelectric absorption, Z for 

Compton scattering and Z2 for pair production [30]. The Zeff varies from a higher value at lower 

energies to a lower value at higher energies, with a peak due to photoelectric effect near the K-

edge of the high Z element present in alkali halides. The Maximum values of Zeff were found for 

RbI and  
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Table 2 Average of effective atomic numbers and electron densities (1023electrons/gram) of     

              Alkali halide material (CuCl). 

 

Name of the process 
  

Total non-coherent 24.19 2.94 

Total coherent 24.19 2.94 

Pair electron 23.68 2.88 

Pair nuclear 24.98 3.037 

Photo electric 27.87 3.39 

Incoherent 24.91 3.03 

Coherent 27.62 3.36 

 

 

 

 

Table 3 Average of effective atomic numbers and electron densities (1023 electrons/gram) of  

              Alkali halide material (CsBr). 

 

Name of the process 
  

Total non-coherent 48.01 2.73 

Total coherent 47.96 2.71 

Pair electron 44.41 2.51 

Pair nuclear 46.31 2.62 

Photo electric 53.27 3.01 

Incoherent 49.47 2.80 

Coherent 53.34 3.02 

 

Table 4 Average of effective atomic numbers and electron densities (1023 electrons/gram) of  

              Alkali halide material (RbI). 

 

Name of the process 
  

Total non-coherent 46.61 2.64 

Total coherent 46.62 2.64 

Pair electron 45.01 2.55 

Pair nuclear 46.29 2.62 

Photo electric 50.62 2.87 



Effective atomic number and electron densities of some alkali 

halides for wide energy region by using mass attenuation 

coefficients 

R. B. Konda1, Shivaleela B2 and 

Shivraj G Gounhalli1 

  
 
 
  
 

Cuest.fisioter.2025.54(1):824-836                                                                                                            830 

 

Incoherent 47.51 2.69 

Coherent 50.64 2.87 

 

CsBr than CuCl due to the presence of high Z elements. Energies below 5 keV, 30 keV and 60 

keV for the three alkali halides photoelectric absorption is dominant. After those energies 

Compton scattering will become the dominant interaction process, between energies 15 keV-300 

keV, 400 keV-100 MeV. Zeff and Nel becoming constant with a minimum value at intermediate 

energies; further, there is an increasing trend in Zeff values due to the relative dominance of 

photon interaction processes in various energy regions. From 100-200 MeV pair production 

starts becoming dominating process. After 200 MeV Zeff will become energy independent [31, 

35].   

 

b) Photoelectric absorption         

A plot of Zeff vs photon energy, especially for medium and high-Z materials, shows the 

distinctive K absorption edges [36]. This is because; photoelectric process is predominant at low 

energies (1 MeV) and for materials of higher atomic numbers. Fig 3 (a and b) demonstrate the 

fluctuation of Zeff and Nel with photon energy for photoelectric absorption. After 5 keV, Zeff and 

Nel become almost constant [37, 38].  

 

c) Coherent & incoherent scattering 

The Fig. 3 (a and b) shows the variation of Zeff and Nel with photon energy for coherent 

scattering. It is observed from the figures that Zeff is independent of energy. Similarly, the 

variation of Zeff with photon energy for incoherent scattering is shown in Fig. 4 (a and b) which 

indicates that Zeff is constant in the energy region 1 keV–100 GeV [39].  
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(a) 

(b) 
 

FIG. 3 Energy dependence of Zeff and Nel, of alkali halides for photoelectric absorption. 

 

 

 
(a) 

 

                               (b) 

 
(a) 

 
(b) 

FIG. 4 Energy dependence of Zeff and Nel, of alkali halides for (a) coherent and (b) incoherent 
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d) Pair production in nuclear field and electric field 

The variation of Zeff with photon energy for electric field is shown in Fig. 5 (a and b), which 

demonstrates that Zeff increases significantly with increasing photon energy from 100 keV-1 

MeV  

for CuCl and from 1 MeV-30 MeV for RbI and CsBr before becoming energy independent. It 

could be because pair production in the nuclear field is Z2 dependent. The variation of Zeff and 

Nel with photon energy for Pair production in the nuclear field is shown in Fig. 4 (a and b). The 

variation is nearly same for as that of electric field [40, 41], .       

 

 

 

 
(a) 

 

 
(b) 

 

 
(a) 

 

 
(b) 
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FIG. 5 Energy dependence of Zeff and Nel, of alkali halides for pair electric and (b) pair nuclear 

field. 

 

 

Conclusions 

            The effective atomic number Zeff and electron density Nel of alkali halide CuCl, RbI and 

CsBr has been calculated in the extended energy region from 1 keV-100 GeV using WinXCom 

program. In total photon interaction with coherent and incoherent one can distinguish three 

energy regions. The main photon interaction processes in these regions are photoelectric 

absorption, incoherent (Compton) scattering and pair production. Zeff and Nel values have also 

been calculated for different processes such as pair production in nuclear and electric field, 

photoelectric absorption, coherent and incoherent scattering. The maximum values of Zeff and Nel 

are found in the low energy range, where photoelectric absorption is the main interaction 

process. The minimum values of Zeff and Nel are found at intermediate energies, where Compton 

scattering is dominant. At high energies Zeff and Nel are independent of the energy. This may be 

due to the dominance of pair production in the high energy region.  
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