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1. Introduction:  

The Advanced Health Index Prediction for Transformers aims to leverage the power of CatBoost algorithm, which is 

known for their efficiency and accuracy in handling categorical data, to predict the health status and potential failures of 

transformer equipment [1]. By integrating machine learning techniques with domain-specific knowledge, this approach 

seeks to enhance predictive maintenance strategies and minimize downtime in electrical systems [2]. The implementation 

of this predictive model will not only improve the reliability of transformer operations but also facilitate proactive 

decision-making by providing insights into maintenance needs before failures occur [3]. This innovative model is expected 

to transform how utilities manage their assets, ultimately leading to cost savings and improved service continuity for 

consumers [4]. On transformer maintenance reveals that traditional methods often rely on reactive strategies, which can 

result in unexpected failures and costly repairs [5]. Transitioning to a predictive maintenance framework allows for 

continuous monitoring of transformer health, enabling utilities to address potential issues before they escalate into serious 

problems [6]. This shift not only enhances operational efficiency but also fosters a culture of safety and accountability 

within the utility sector, as stakeholders become more informed about the condition of their assets [7]. Implementing such 

a proactive approach can significantly reduce downtime and extend the lifespan of transformers, ensuring that utilities can 

deliver reliable power to their customers without interruption [8]. By leveraging advanced analytics and real-time data 

collection, utilities can gain deeper insights into the performance trends of their transformers [9], ultimately leading to 

more informed decision-making and resource allocation. This data-driven approach enables utilities to prioritize 
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maintenance activities based on the health status of each transformer, thereby optimizing operational costs and enhancing 

overall system reliability. This not only minimizes the risk of unexpected failures but also fosters a culture of continuous 

improvement within the utility sector, as organizations adapt to evolving technologies and customer expectations [10]. 

Transformers play a crucial role in the electrical grid by stepping up or stepping down voltage levels to ensure efficient 

power distribution across long distances, thus maintaining stability and reliability in energy supply. Understanding the 

different types of transformers, such as distribution and power transformers, is essential for utilities to effectively manage 

their infrastructure and meet the demands of a growing energy landscape [11]. The ongoing advancements in transformer 

technology, including smart transformers and renewable integration, are set to further improve the efficiency and 

adaptability of power systems in response to evolving energy needs [12]. Objectives of this research include exploring the 

effectiveness of CatBoost algorithms in improving prediction accuracy of transformer health, assessing their impact on 

operational efficiency, and identifying best practices for integrating these advanced analytical tools into existing energy 

management systems [13]. This research aims to provide insights into the practical applications of CatBoost, highlighting 

its potential to transform energy management strategies and enhance sustainability efforts within the industry. The findings 

from this research could pave the way for innovative solutions that not only optimize resource allocation but also 

contribute to reduce downtime and extend the lifespan of transformers [14].  

 

2. Literature Review: 

The maintenance of transformers has evolved significantly over the years, transitioning from traditional reactive strategies 

to more proactive predictive maintenance frameworks. This shift is largely due to advancements in machine learning and 

data analytic, which have enabled utilities to monitor transformer health in real-time and make informed decisions 

regarding maintenance and resource allocation. Historically, transformer maintenance practices have relied on reactive 

strategies, where utilities respond to failures after they occur. This approach often leads to unexpected outages, costly 

repairs, and prolonged downtime, which can severely impact the reliability of power supply. Studies have shown that 

reactive maintenance can result in significant financial losses for utilities, highlighting the need for a more proactive 

approach [15]. In recent years, the assessment and prediction of transformer health have gained significant attention due to 

their critical role in power system reliability. Various methodologies have been explored, ranging from traditional 

statistical models to advanced AI-driven techniques. This review presents a comparative analysis of recent studies focusing 

on transformer fault diagnosis and health index prediction, highlighting their methodologies, results, and identified 

research gaps. 

 

 

 

 

 

 

 



 

 

 

 

Author Method Results Research Gap 

[16] SVM optimized by firefly algorithm 

with RBF kernel for transformer 

fault diagnosis. 

Improved accuracy and fault 

prediction through optimized 

hyperparameters, enabling early 

fault detection. 

Lack of integration with broader 

power system stability strategies. 

[17] Fuzzy logic-based health index 

using diagnostic test results. 

Achieved 92% accuracy with data 

from 200 transformers, 

outperforming expert models. 

Challenges in real-world 

implementation and integration with 

predictive maintenance systems. 

[18] Failure probability-based life 

prediction using health index and 

polynomial regression. 

Established a mapping between 

health index and failure 

probability for life prediction. 

Limited consideration of external 

factors influencing degradation. 

[19] SVM and ANN for transformer 

health detection using maintenance 

data. 

SVM with nonlinear kernels 

showed high performance but 

overfitting issues. 

Need for better generalization and 

optimal model selection strategies. 

[20] Regression and classification for 

health index prediction with 

missing data scenarios. 

Gradient Boosting achieved 

97.87% accuracy, addressing data 

unavailability. 

Limited exploration of cumulative 

effects of missing data. 

[21] Fuzzy inference-based health 

assessment using multi-dimensional 

lifecycle data. 

Accurate health ratings and 

maintenance guidance validated 

by field tests. 

Incomplete coverage of condition 

indicators and reliance on expert 

input. 

[22] Health index integrating operational 

history and test data. 

Improved maintenance planning 

and remaining life prediction. 

Need for validation across diverse 

transformer types and conditions. 

[23] Comparing WSM, FIS, and 

combined methods for health index 

calculation. 

Combined approach with K-

means clustering provided 

consistent maintenance insights. 

Lack of standardization in health 

index methods and integration 

strategies. 

[24] AI-based health index prediction 

using decision tree classifiers. 

Achieved 96.3% accuracy, with 

insulation resistance as the key 

factor. 

Limited exploration of other 

algorithms or hybrid approaches for 

improvement. 

 

While substantial progress has been made in transformer health assessment through machine learning, fuzzy logic, and 

hybrid approaches, several challenges remain. Key research gaps include the need for better integration with predictive 

maintenance strategies, improved generalization of models, consideration of external influencing factors, and 

standardization of health index methodologies. Future research should focus on developing robust, scalable, and 

interpretable models that enhance real-world implementation and ensure comprehensive transformer health monitoring. 

 

 

3. Proposed Approach 

The Figure 1 visually represents the key components of transformer health prediction using the CatBoost algorithm. It 

highlights the essential aspects, including data sources, feature engineering, hyperparameter tuning, model performance 

metrics, and strategies for improvement. These elements collectively contribute to developing a robust predictive model for 

transformer health assessment. By leveraging CatBoost, the framework ensures effective handling of categorical data, 

reducing overfitting, and improving model interpretability. This structured approach enhances the accuracy and reliability 

of transformer health prediction. 
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Figure 1. CatBoost-Based Transformer Health Diagnosis Framework 

 

3.1. Data Source  

The dataset used for this study is sourced from [25], which provides failure analysis data for power transformers. This 

dataset, available on Mendeley Data, contains crucial diagnostic information that aids in identifying root causes of 

transformer failures. By leveraging this data, the proposed CatBoost-based transformer health diagnosis framework 

enhances predictive accuracy through effective feature engineering, hyperparameter tuning, and performance evaluation. 

3.2 Data Specification 

The dataset used for transformer fault diagnosis consists of 470 records with 15 attributes, covering key diagnostic 

indicators for transformer health assessment. The attributes include: 

1. Dissolved Gas Analysis (DGA) Parameters: 

• Hydrogen, Oxygen, Nitrogen, Methane, Carbon Monoxide (CO), Carbon Dioxide (CO₂), Ethylene, Ethane, 

Acetylene 

2. Oil Quality Indicators: 

• Dibenzyl Disulfide (DBDS), Power Factor, Interfacial Voltage, Dielectric 

Rigidity, Water Content  

3. Target Variable: 

• Health Index – A numerical value representing the overall condition of the  



 

 

transformer. 

These features are crucial in identifying early signs of transformer degradation, enabling predictive maintenance through 

machine learning model CatBoost. The dataset ensures a comprehensive evaluation of transformer health by integrating 

gas concentrations, electrical properties, and oil quality parameters.  

3.3 Flow chart 

The Figure 2 represents flowchart of machine learning workflow for transformer health prediction using CatBoost. The 

process begins with data collection and preprocessing, including data normalization and correlation analysis. Various train-

test splits (60-40 to 90-10) are explored to ensure robustness. The CatBoost model is then trained, and hyperparameter 

tuning is performed using GridSearchCV. Model performance is evaluated based on accuracy (R-squared) and error 

metrics (MAE, MSE, RMSE, RMSLE, MAPE).  

 

Figure 2. Flow Chart 

3.4 Data Preprocessing  

The dataset has no missing values. The Figure 3 is a pair plot visualization, which presents scatter plots of pair wise 

relationships between multiple variables along with their univariate distributions. This is useful for identifying correlations, 

patterns, and potential outliers in the dataset. 
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Figure 3. Pair Plot Visualization 

The Figure 4 presents Distribution Analysis of Key Features, showcasing their distributions. This visualization is crucial 

for understanding the spread, skewness, and presence of outliers in the dataset. Notably, several features, such as 

Hydrogen, Oxygen, Methane, CO, CO₂, Ethylene, and Ethane, exhibit highly skewed distributions with most values 

concentrated near zero. In contrast, Nitrogen and Dielectric Rigidity follow a more normal-like distribution. These insights 

help in preprocessing steps like normalization or transformation to enhance model performance.  



 

 

 

Figure 4. Distribution Analysis of Key Features 

 

The Figure 5 represents Feature Correlation Heatmap, which illustrates the pair wise correlation coefficients between 

different features. From the heatmap:Methane and Ethane (0.91), Methane and Ethylene (0.80), and Ethylene and Ethane 

(0.76) show strong positive correlations, suggesting they may carry redundant information. DBDS and Health Index (0.47) 

suggest that DBDS might be an important feature for predicting health index. Interfacial V and Health Index (-0.40) and 

Water Content and Health Index (-0.28) show moderate negative correlations, indicating that higher interfacial voltage and 

water content might degrade the health index. This analysis helps in feature selection, reducing multicollinearity, and 

improving model interpretability. 
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Figure 5. Feature Correlation Heatmap 

 

4. Results and Discussion 

The Table 1 presents the cross-validation scores for different train-test split ratios, with the mean cross-validation (CV) 

score serving as a measure of model performance stability across multiple training subsets. Observations include: The 60-

40 split has the lowest mean CV score (0.6148), suggesting that using less training data leads to lower model 

generalizability. The 85-15 (0.6599) and 90-10 (0.6608) splits show the highest mean CV scores, indicating that increasing 

training data improves model performance. 80-20 (0.6351) and 75-25 (0.6184) splits demonstrate balanced performance. 

Variability in individual CV scores across different splits highlights fluctuations in model performance, emphasizing the 

need for a well-optimized train-test ratio to achieve stable predictions. These insights are critical for determining the 

optimal train-test split in transformer health prediction, ensuring that the model learns effectively while maintaining strong 

generalization. 



 

 

 

Table 1 Cross-Validation Scores For Different Train-Test Split Ratios 

Train 

Test 

Splits Cross-Validation Scores 

Mean CV 

Score 

60-40 [0.762, 0.5685, 0.6987, 0.5168, 0.7386, 0.7342, 0.6015, 0.7037, 0.33, 0.4936] 0.6148 

65-35 [0.6956, 0.5426, 0.804, 0.6385, 0.6902, 0.4849, 0.3823, 0.5958, 0.7286, 0.6144] 0.6177 

70-30 [0.5914, 0.6363, 0.7013, 0.7059, 0.4718, 0.6578, 0.7447, 0.5444, 0.5378, 0.6259] 0.6217 

75-25 [0.511, 0.474, 0.6391, 0.7378, 0.7939, 0.6006, 0.665, 0.6162, 0.6157, 0.531] 0.6184 

80-20 [0.5043, 0.6695, 0.6931, 0.3378, 0.6277, 0.8055, 0.627, 0.7189, 0.6648, 0.7025] 0.6351 

85-15 [0.6563, 0.6054, 0.5371, 0.6858, 0.6663, 0.8705, 0.7087, 0.6901, 0.7234, 0.4554] 0.6599 

90-10 [0.7364, 0.6781, 0.6447, 0.7093, 0.668, 0.3763, 0.644, 0.7282, 0.6265, 0.7967] 0.6608 

 

The Table 2 presents Optimal CatBoost Hyperparameters For Different Train-Test Split Ratios and corresponding best 

cross-validation (CV) scores for different train-test splits in training a CatBoost model. Key observations include: The best 

CV scores improve as the training data increases, with the 90-10 split achieving the highest score (0.6984), indicating that 

more training data enhances model performance. Across most splits, the optimal depth is 4, suggesting that a shallow 

decision tree structure effectively balances model complexity and generalization. The learning rate varies, with 0.1 being 

optimal for larger train sets (60-40, 65-35, 70-30, 85-15), while 0.05 is preferred for 75-25, 80-20, and 90-10, indicating 

that smaller train sets benefit from a lower learning rate to improve stability. The number of iterations increases (200) for 

80-20 and 90-10, suggesting that more training data allows for deeper model learning. The L2 regularization parameter 

(l2_leaf_reg) shifts between 1 and 3, with higher values (3) appearing in 80-20 and 85-15, indicating a need for stronger 

regularization as training data increases. These insights help determine the optimal train-test split and hyperparameter 

tuning for maximizing CatBoost model performance in transformer health prediction. 

Table 2 Optimal CatBoost Hyperparameters For Different Train-Test Split Ratios 

Train 

Test 

Splits Best Parameters Best CV Score 

60-40 {'depth': 4, 'iterations': 100, 'l2_leaf_reg': 1, 'learning_rate': 0.1} 0.64366241 

65-35 {'depth': 4, 'iterations': 100, 'l2_leaf_reg': 1, 'learning_rate': 0.1} 0.650501917 

70-30 {'depth': 4, 'iterations': 100, 'l2_leaf_reg': 1, 'learning_rate': 0.1} 0.683980674 

75-25 {'depth': 4, 'iterations': 100, 'l2_leaf_reg': 1, 'learning_rate': 0.05} 0.659914026 

80-20 {'depth': 4, 'iterations': 200, 'l2_leaf_reg': 3, 'learning_rate': 0.05} 0.674304996 

85-15 {'depth': 4, 'iterations': 100, 'l2_leaf_reg': 3, 'learning_rate': 0.1} 0.673916667 

90-10 {'depth': 4, 'iterations': 200, 'l2_leaf_reg': 1, 'learning_rate': 0.05} 0.698387144 

 

The Table 3 compares the best cross-validation (CV) scores with the mean CV scores across different train-test splits to 

analyze model improvement. Key observations include: All train-test splits show improvement when using optimal 

hyperparameters, with the highest increase (10.02%) observed for the 70-30 split, indicating that hyperparameter tuning 
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significantly enhances model performance at this ratio. The difference between the best and mean CV scores varies, with 

the largest gain (0.0623) occurring at 70-30, suggesting this split benefits the most from hyperparameter optimization. The 

lowest percentage improvement (2.12%) is at 85-15, implying that model performance is already near optimal and less 

sensitive to further tuning. The 90-10 split achieves the highest best CV score (0.6984), but its improvement percentage 

(5.69%) is moderate compared to 70-30. These findings support the selection of an optimal train-test ratio and emphasize 

the impact of hyperparameter tuning in maximizing the predictive accuracy of transformer health prediction. 

 

Table 3 Comparison of the Best Cross-Validation (CV) Scores with the Mean CV Scores 

Train-Test Splits Best CV Score Mean CV Score Difference % Improvement 

60-40 0.6436 0.6148 0.0288 4.68 

65-35 0.6505 0.6177 0.0328 5.31 

70-30 0.6841 0.6217 0.0623 10.02 

75-25 0.6599 0.6184 0.0415 6.71 

80-20 0.6743 0.6351 0.0392 6.17 

85-15 0.6739 0.6599 0.0141 2.12 

90-10 0.6984 0.6608 0.0376 5.69 

 

Table 4 Performance Metrics across Different Train-Test Split Ratios 

Train-

Test 

Splits 

R2 MAE MSE RMSE RMSLE MAPE Comments 

60-40 0.694 6.928 104.968 10.245 0.35 29.325 Low R² and high error metrics. Not optimal. 

65-35 0.709 6.987 104.892 10.242 0.34 28.671 Slightly better R², but high MAE/MAPE. 

70-30 0.746 6.242 93.512 9.67 0.32 24.084 Good overall balance; best MAPE and low errors. 

75-25 0.759 6.315 82.602 9.089 0.31 26.512 Best R² and RMSE; very competitive. 

80-20 0.755 6.064 83.989 9.165 0.31 25.564 Very close to Set 4; better MAE/MAPE. 

85-15 0.73 6.469 95.07 9.75 0.31 26.106 Decent R², but higher errors than Sets 70-30,75-25. 

90-10 0.744 6.62 103.997 10.198 0.32 24.504 Competitive MAPE, but lower R² and high errors. 

 

Table 4 shows Performance Metrics across Different Train-Test Split Ratios, to determine the best set, we evaluate each 

metric with the following criteria: R²: Higher is better. MAE, MSE, RMSE, RMSLE, MAPE: Lower is better. Best split is 

75-25: Highest R² (0.759), lowest RMSE (9.089), and competitive RMSLE (0.31). This set performs best overall, 

particularly if R² and RMSE are prioritized. Split 70-30: Best for MAPE (24.084) and low errors overall, but slightly lower 

R². Split 80-20: Very close to Split 75-25, with better MAE and MAPE but slightly lower R² and RMSE. Train Test Split 

75-25 is the best choice for overall performance. Figure 6. is showing Performance Metrics for Different Train Test Splits. 

Figure 7-13 shows scatter plots of different train test splits. 
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Figure 6. Performance Metrics for Different Train Test Splits 
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Figure 7. Scatter plot of Train Test Split 60-40 

 

Figure 8. Scatter plot of Train Test Split 65-35 

 



 

 

Figure 9. Scatter plot of Train Test Split 70-30 

 

Figure 10. Scatter plot of Train Test Split 75-25 

 

Figure 11. Scatter plot of Train Test Split 80-20 
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Figure 12. Scatter plot of Train Test Split 85-25 

 

Figure 13. Scatter plot of Train Test Split 90-10 

 

Conclusion: 

The Advanced Health Index Prediction model for transformers demonstrates significant promise in revolutionizing 

maintenance strategies within the utility sector. Our analysis reveals that the optimal train-test split ratio of 75-25 provides 

the most reliable predictive performance, achieving an R² value of 0.759 and an RMSE of 9.089. The study shows varying 

levels of improvement across different split ratios, with the 70-30 split showing the highest percentage improvement 

(10.02%) after hyperparameter optimization, while the 90-10 split achieved the highest absolute CV score (0.6984). These 

findings underscore the importance of proper data partitioning and model tuning in developing robust predictive 

maintenance systems. The implementation of this CatBoost-based model represents a significant step forward in 

transitioning from reactive to predictive maintenance strategies, potentially leading to reduced downtime, extended 



 

 

transformer lifespan, and improved service reliability for utility providers. Future work could focus on incorporating real-

time monitoring capabilities and expanding the model's applicability to diverse transformer types and operating conditions. 
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