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1. Introduction:   

In the recent years, many researchers working in the field of queueing theory focused on 

the M/M/1 queueing systems that include the effect of catastrophes and feedback. 

Whenever a catastrophe occurs at the system, all the customers there are destroyed 

immediately, the server gets inactivated momentarily, and the server is ready for service 

when a new arrival occurs. Feedback in queueing literature represents customer 

dissatisfaction because of inappropriate quality of service. In case of feedback, after 

getting partial or incomplete service, customer retries for service. Also, we have another 

factor of environmental change, i.e. the change in the environment affects the state of the 

queueing system. In other words, the state of the queueing system is a function of 

environmental change factors. 

This paper is the generalization of our previous work [Kumar, Darvinder (9)] in which 

we do not consider the concept of customers feedback.  Previously we assumed that the 

served customer leaves the system permanently and never return back. In this paper we 

consider that the served customer may return back for getting service if it is not satisfied 

by their previous service given by the server. After obtaining service, if the customers are 

unsatisfied (feedback), they will return back to the service terminal as a new arrival or 

they will leave the service station permanently as satisfied customers. The production 

firm may for various seasons stop the supply of the product at some time which make 

them zero instantaneously and start it again can be regarded as the occurrence of a 
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catastrophe. Therefore, the proposed model is highly useful for dealing with real-world 

queuing situations such as manufacturing firms or banking sector etc. 

Many authors have used the concept of effect of environmental changing states, feedback 

and catastrophes in queues see e.g. Jain and Kanethia [7], Bura, Gulab et. al [3], Goel, 

L.R. [6]. In [15] Thangaraj and Vanitha, obtained transient solution of M/M/1 feedback 

queue with catastrophes using continued fractions and the steady-state solution. Kalidass 

et al. [8] studied the time dependent analysis of an M/M/1/N queue with catastrophes and 

a repairable server. Kumar and Sharma [12] studied a M/M/1 Feedback queuing model 

with retention of reneged customers and Balking.  

The layout of this paper is as follows. In the next section we present the assumptions and 

definitions of the queueing model. Section 3 provides a detailed analysis of the main 

model, which is used in section 4 in proving some particular cases. Steady state results 

are also derived and discussed along with the application of the model in section 5 and 6. 

 

2. Assumptions and Definitions: 

(i) The customers arrive in the system one by one in accordance with a Poisson       

 process at a single service station. The arrival pattern is non-homogeneous, i.e.  there 

 may exist two arrival rates, namely 
1
 and 0 of which only one is operative at any 

 instant.  

(ii) The customers are served one by one at the single channel. The service time is 

 exponentially distributed. Further, it has been assumed that corresponding to arrival 

 rate 
1
 the Poisson service rate is na and the service rate corresponding to the arrival 

 rate 0 is nb . The state of the queueing system when operating with arrival rate 
1
 

 and service rate na  is designated as E whereas the other with arrival rate 0 and service 

 rate nb  is designated as F.  

(iii) The Poisson service rate na is assumed to depend on the number waiting in the 

 queue, including the one in service in such a manner that whenever this number 

 (say n) is equal to some fixed number (say N), we have some normal rate as 
1
  and for 

 number of units greater than N, the rate is higher and for number of units less than N it   

 is lower than the normal rate. We therefore, define   

( ) Nnε1μa 1n −+=       with  
ε

1
Nn −  

and    Mn
ε

1
N0 −  

Where M denotes the size of the waiting space and ε  is a positive number
N

1
 . This 

restriction on M is necessary to avoid a negative value of na . Similarly, the Poisson 

service rate nb  is defined as 

   ( ) Nnε1μb 2n −+=      with    
ε

1
Nn −  

    and   Mn
ε

1
N0 −
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(iv)  In state E after obtaining a service, an unsatisfied customer may rejoin the queue 

 for receiving another service with probability 1-p (=q), referred to as “feedback” 

 or they can choose to leave the system permanently with probability p, p+q=1. 

 There is no feedback in state F of the system. 

(v)  The Poisson rates at which the system moves from environmental states F to E and E  

  to F are denoted by α  and β  respectively.  

(vi) When the system is not empty, catastrophes occur according to a Poisson process 

 with rate . The effect of each catastrophe is to make the queue instantly empty. 

 Simultaneously, the system becomes ready to accept the new customers.  

(vii) The queue discipline is first- come- first- served.  

(viii) The capacity of the queueing system is limited to M. i.e., if at any instant there 

 are M units in the queue then the units arriving at that instant will not be permitted 

 to join the queue, it will be considered lost for the system.  

 

3. Formulation of Model and Analysis (Time Dependent Solution): 

Define,  

P
n
 (t) = Joint probability that at time t the system is in state E and n units are in 

the   queue, including the one in service.   

Q
n
(t) = Joint probability that at time t the system is in state F and n units are in the 

  queue, including the one in service.  

R
n
(t) = The probability that at time t there are n units in the queue, including the  

  one in service.  

Obviously, 

  R
n
(t) = P

n
(t) + Q

n
(t)  

Let us reckon time t from an instant when there are zero customers in the queue and the 

system is in the environmental state E so that the initial conditions associated with P
n
(t) 

and Q
n
(t) becomes,  

 P
n
(0) = 



 =

otherwise;0

0n;1
 

 Q
n
(0) = 0 ;     for all n.  

The differential -difference equations governing the system are: 

( ) ( ) ( ) ( ) ( ) ( ) ;tPξtαQtpPatPξβλtP
dt

d M

0n

n011010 
=

+++++−=  n = 0  ..... (1) 

( ) ( ) ( ) ( ) ( ) ( ) ;tαQtPλtpPatPξβpaλtP
dt

d
n1n11n1nnn1n ++++++−= −++

 0 < n < M     

           .... (2)  

( ) ( ) ( ) ( ) ( ) ;tαQtPλtPξβpatP
dt

d
M1M1MMM ++++−= −

 
n = M     .... (3) 

( ) ( ) ( ) ( ) ( ) ( ) ;tQξtβPtQbtQξαtQ
dt

d M

0n

n01100 
=

++++−=

  

 n = 0   .... (4) 

( ) ( ) ( ) ( ) ( ) ;tβPtQbtQξαbtQ
dt

d
n1n1nnnn ++++−= ++

 
0 < n < M   ..... (5) 
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( ) ( ) ( ) ( ) ;tβPtQξαbtQ
dt

d
MMMM +++−=   n = M     ..... (6) 

Define, the Laplace Transform as 

L.T. [f (t)] = ( ) ( )


− =
0

st sfdttfe       .....(7)  

Now, taking the Laplace transforms of equations (1)–(6) and using the initial conditions, 

we get  

( ) ( ) ( ) ( ) ( )
=

++=−+++
M

0n

n01101 sPξsQαsPpa1sPξβλs    `.... (8) 

( ) ( ) ( ) ( ) ( )tQαsPλsPpasPξβpaλs n1n11n1nnn1 ++=++++ −++
     

           .... (9) 

( ) ( ) ( ) ( )sQαsPλsPξβpas M1M1MM +=+++ −
                 ... (10) 

( ) 
=

++=++
M

0n

n0110 (s)Qξ(s)Pβ(s)Qb(s)Qξαs     .... (11) 

( ) (s)Pβ(s)Qb(s)Qξαbs n1n1nnn +=+++ ++
     .... (12) 

( ) ( ) ( )sPβsQξαbs MMM =+++                   .... (13) 

Define, the probability generating functions  

( ) ( )
=

=
M

0n

n

n zsPsz,P         .... (14) 

( ) ( )
=

=
M

0n

n
n zsQs,zQ         .... (15) 

( ) ( )
=

=
M

0n

n
n zsRs,zR         .... (16) 

where  

( ) ( ) ( )sQsPsR nnn +=      

Multiplying equations (8)–(10) by the suitable powers of z, summing over all n and using 

equations (14)–(16), we have.  

  ( ) ( )sz,Qzαsz,Pξzβzz)z(1λεN)1)(1p(zμzss)(z,Ppε1)μz(z 111 −++−+−−++−        

( ) ( ) ( ) ( ) ( )
=

+ +−+−−+=
M

0n

nM

1M

101 sPzξsPz1zλsP1zεN)p(1μz        .... 

(17) 

Similarly, from equations (11)–(13) and using equations (14)–(16), we have  

s)βzP(z,s)Q(z,ξz]αzεN)(11)(zμ[zss)(z,Qεμ1)-z(z 22 −++−−++  

          ( ) ( ) ( )
=

+−−=
M

0n

n02 sQzξsQ1zεN)(1μ                                          ... (18) 

In order to obtain P(z,s) and Q(z,s) from equation (17) & (18), we use Iteration Method. 

If we assume that the parameter β is small, then we can use it in the series solution as 

follows: 
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++= s)(z,Pβs)(z,Ps)P(z, 10
                                                          ….. (19) 

++= s)(z,Qβs)(z,Qs)Q(z, 10
                                              ….. (20) 

Where the non-written terms are of higher order of β (i.e., we limit ourselves to the first 

approximation). Substituting values of P(z,s) and Q(z,s) from equations (19) and (20) in 

equations (17) and (18) and identifying terms with like powers of β . We obtain thus the 

zero order (i.e., terms not containing β ) and one order (i.e., terms containing first power 

of β ) approximations: 

10

1

010 zs)(z,Q
1)pεε(μ

α
s)(z,P(z)ηs)(z,P =

−
−+                                               .... (21) 

2020 zs)(z,Q(z)ηs)(z,Q =+                                                                  .... (22) 

0s)(z,Q
pε1)μ(z

α
s)(z,P(z)ηs)(z,P

pε1)μ(z

1
s)(z,P 1

1

110

1

1 =
−

−+
−

+  

                               .... (23) 

0s)(z,P
ε1)μ(z

1
s)(z,Q(z)ηs)(z,Q 0

2

121 =
−

−+                                    … 

(24) 

where, 

 
εpμ1)(zz

zξz)z(1λN)ε(11)p(zμsz
(z)η

1

11
1

−

+−+−−+
=  

 

εμ1)(zz

zξzαN)ε(11)(zμsz
(z)η

2

2
2

−

++−−+
=  

( ) ( ) ( ) ( ) ( )

εpμ1)(zz

sPzξsPz1zλsP1zεN)p(1μz

z
1

M

0n

nM

1M

101

1
−

+−+−−+

=

=

+

 

( ) ( ) ( )

εμ1)(zz

sQzξsQ1zεN)(1μ

z
2

M

0n

n02

2
−

+−−

=

=  

On solving equation (22), we have 

 
A(z)

(s)QN(z)(s)QM(z)

s)(z,Q

M

0n

n0

0


=

+

=               … (25) 

where 

 
εμ

ξ)α(s

ε

εN1

21)(zzA(z)

++−

−=  

 dz1)(zz
ε

εN1
M(z)

εμ

ξ)α(sz

0

1
ε

εN1

2

++
−

−

−
−

=   
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 dz1)(zz
εμ

ξ
N(z)

1
εμ

ξ)α(sz

0

ε

εN1

2

2

−
++−

−=   

Solving equations (25) and (21) for s)(z,P0
, we have 

( )
( ) ( ) ( )

( )zB

(z)K(z)K(s)P(z)K(s)Q(z)KsP(z)KsP(z)KsQ

sz,P

M

0n

65n

M

0n

4n3M2010

0


==

+++++

=                     

                      … (26) 

 

where 

 
z

pεμ

λ

pεμ

ξ)(s

ε

εN1

1

1

1 e1)(zzB(z)


−+−

−=    

         

 ( ) dzM(z)e1z
pεμ

α
(z)K

z
pεμ

λz

01

1
1

11
ε2μ

ξ)α(s

pε1μ

ξs

−=


−










+
++

−
+

 

 ( ) dze1zz
ε

Nε1
(z)K

z
pεμ

λz

0

1
ε

εN1

2
1

1pε1μ

ξ)(s


−

−
−

−
−

= 

+

 

 ( ) dze1zz
pεμ

λ
(z)K

z
pεμ

λz

0

M
ε

Nε1

1
3

1

1
pε1μ

ξ)(s

1


−

+
−

−−= 

+

 

 ( ) dzN(z)e1z
pεμ

α
(z)K

z
pεμ

λz

01

4
1

11
ε2μ

ξ)α(s

pε1μ

ξs

−=


−










+
++

−
+

 

 ( ) dze1zz
pεμ

ξ
(z)K

z
pεμ

λz

0

ε

εN1

1

5
1

11
pε1μ

ξs


−−

−= 
−

+

 

 ( ) dze1zz
pεμ

1
(z)K

z
pεμ

λz

0

ε

εN1

1

6
1

11
pε1μ

ξ)(s


−−

−= 
−

+

 

Solving equations (26) and (24) for s)(z,Q1 , we have 

( )
( ) ( ) ( )

( )zA

(z)K(z)K(s)P(z)K(s)Q(z)KsP(z)KsP(z)KsQ

sz,Q

M

0n

1211n

M

0n

10n9M8070

1


==

+++++

=

 

                     

….. 

(27) 

where, 

 ( ) dz(z)K1zz
εμ

1
(z)K i

z

0

ε

εN1

2

6i

1
ε2μ

ξ)(s

−= 
−

++−

+



      ; i=1, 2, 3, 4, 5, 6. 

Again solving equations (27), (26) and (23) for s)(z,P1 , we have 
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( )
( ) ( ) ( )

( )zB

(z)K(z)K(s)P(z)K(s)Q(z)KsP(z)KsP(z)KsQ

sz,P

M

0n

1817n

M

0n

16n15M140130

1


==

+++++

=  

                   ….. (28) 

where 

 dz(z)K(z)K
A(z)

B(z)α

1z

1

εμ

1
(z)K 1ji

z

01

j)(6ji 







−

−
= +−++       ;    

                12)(5,11)(4,10),(3,9),(2,,8)(1,7),(0,:i)(j,  

 

Thus by putting the values of s)(z,Q,s)(z,Qs),(z,Ps),(z,P 1010
 in equations (19) and 

(20) we have the final approximate solutions for s)Q(z,ands)P(z,  

    ( )   ( )

  ( )   ( )  

B(z)

(z)βK(z)KsP(z)βK(z)KsQ(z)βK(z)K

sP(z)βK(z)KsP(z)βK(z)K(s)Q(z)βK(z)K

s)P(z,

M

0n

186

M

0n

n175n164

M15301420131

 
= =

++++++

+++++

=           .... 

(29) 

  ( ) ( )  

A(z)

(z)βK(s)P(z)βK

(s)Q(z)βKN(z)sP(z)βKsP(z)βK(s)Q(z)βKM(z)

s)Q(z,

M

0n

12n11

M

0n

n10M90807





=

=

++

+++++

=          .... 

(30) 

where 

( ) ( )
( )ξβαss

ξαs
sPs1,P

M

0n

n
+++

++
==

=  

( )ξβαss

β
(s)Qs)Q(1,

M

0n

n
+++

==
=

 

On adding relations (29) and (30), we have  

 

       

       

     

B(z)A(z)

(z)βB(z)K(z)βK(z)KA(z)(s)P(z)βB(z)K(z)βK(z)KA(z)

(s)Q(z)βKN(z)B(z)(z)βK(z)KA(z)(s)P(z)βB(z)K(z)βK(z)KA(z)

(s)P(z)βB(z)K(z)βK(z)KA(z)(s)Q(z)βKM(z)B(z)(z)βK(z)KA(z)

s)R(z,

M

0n

12186n11175

M

0n

n10164M9153

0814207131





=

=

++++++

++++++

+++++++

=

 

           … (31) 

Since, 

 ( ) ( ) ( )
s

1
sQsPsR

M

0n

n

M

0n

n

M

0n

n =+= 
===

      … (32) 
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Thus relation (31), for z=1 gives 

s)R(z,lim
s

1
s)R(1,

1z→
==        ... (33) 

 s)P(z,lim(s)Ps)P(0,
0z

0
→

==                          …… (34) 

and s)Q(z,lim(s)Qs)Q(0,
0z

0
→

==                 ….. (35) 

The relations (33), (34), and (35) on solution gives the values of .(s)P(s),Q(s),P M00 .  

4. Particular Cases: 

Case 1: Letting →, →0 and setting 1N1,ε ==  and 
1
= 

2
=  (i.e., when the 

departure rate is nμ ), in relation (31), we have  

( )
K(z)

)z(L
s

1
(z)L(s)P(z)L

sz,r
32M1 ++

=           .... (36) 

where 

 ( ) dze1zz
μ

λ
(z)L

z
μ

λz

0

M1
1

1
μ

ξs


−

−−= 

+

 

 ( ) dze1z
μ

ξ
(z)L

z
μ

λz

0

2

11
μ

ξs


−

−= 
−

+

 

 ( ) dze1z
μ

1
(z)L

z
μ

λz

0

3

11
μ

ξs


−

−= 
−

+

 

 
z

μ

λ

μ

ξ)(s 1

e1)(zK(z)


−+

−=  

The value of the unknown quantity (s)PM  can be obtained by solving the equation

s

1
s)r(z,lim

1z
=

→
. 

Case 2: In relation (31), if p=1, i.e. when there are no feedback customers. The model 

reduces to one which is studied by Kumar, Darvinder [9]. 

 

5. Steady State Results: 

This can at once be obtained by the well -known property of the Laplace transform given 

below: 

( ) ( )sfslimtflim
0st →→

= ,     If the limit on the left hand side exists.  

Then   

( ) ( ) sz,RslimzR
0s→

=  

By employing this property, we have from relation (31). 
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       

       

  

(z)B(z)A

C(z)K(z)Bβ(z)Kβ(z)K(z)AP

(z)Kβ(z)N(z)B(z)Kβ(z)K(z)AQ(z)K(z)Bβ(z)Kβ(z)K(z)AP

(z)K(z)Bβ(z)Kβ(z)K(z)AP(z)Kβ(z)M(z)B(z)Kβ(z)K(z)AQ

R(z)
11175

M

0n
n

10164

M

0n
n9153M

8142071310



++++

+++++++

++++++

=




=

=

           ..... 

(37) 

where, 

 
εμ

ξ)(α

ε

εN1

21)(zz(z)A
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 C = the constant of integration. 

The unknown quantities 
==

M

0n

n

M

0n

nM00 PandQ,P,Q,P  can be evaluated as before. 

Particular Case: 

Relation (36), on applying the theory of Laplace transforms gives  
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=C the constant of integration. 

The unknown quantity of equation (38) can be evaluated as before. 

When no catastrophe and feedback are allowed in the queueing system i.e., ξ = 0 

and p=1, relation (38), gives  
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λ 11


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(39) 

where 

1C = the constant of integration. 

The unknown quantity MP  can be evaluated as before.     

For unlimited waiting space, the relation (39) becomes, If Max (, |z|)  1. 

( ) 1

μ

zλ

Czre
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=

−

  

Which for z = 1 gives, μ

λ

1

1

eC

−

=      

Hence,    
z)(1

μ

λ1

er(z)
−

−

=                         ….. (40) 

which is a well- known result.  

 

Steady-state probabilities of the M/M/1 Queue: 

In [11], Kumar, B. K., and Arivudainambi, D. have studied the transient solution of an 

M/M/1 queue with catastrophes. They have also obtained the steady- state probabilities 

and mean & variance of the M/M/1 queue with catastrophes. When a catastrophe occurs 

at the service facility i.e. ξ >0, the steady- state distribution {𝑝𝑛;  𝑛 ≥ 0} of the M/M/1 

queue with catastrophes corresponds to 

𝑝0 = (1 − 𝜌)  ;   𝑛 = 0       ….(41) 

𝑝𝑛 = (1 − 𝜌)𝜌𝑛  ;   𝑛 =1, 2, 3, ……     ….(42) 

where 
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ρ =
(λ+μ+ξ)−√λ2+μ2+ξ2+2λξ+2μξ−2λμ

2μ
    ….(43) 

Thus equations (41)-(43) provide the steady- state distribution for the queueing system. 

Obviously, the steady state distribution exists if and only if ρ < 1. 

Note: The steady- state probability of this Markov process exists if and only if ξ >
0 or ξ = 0 and λ > μ. It is also observed that the results of equations  (41)-(43) agree 

with the model discussed above and with Chao, X [4]. 

6. Application of the Model: 

The model’s real-world scenario may be presented in many practical situations e.g. for a 

production firm engaged in manufacturing the product ‘X’. If a customer finds the service 

terminal/ sales department, they will be welcomed by a sales manager, who will provide 

the customer with the first service, such as sale of product ‘X’, and then the sales 

manager will provide the second service, i.e., the packing/billing of product ‘X’. After 

receiving first service from the sales manager, the customer may leave the system or join 

for the second service. After obtaining service, if the customers are unsatisfied 

(feedback), they will return back to the service terminal as a new arrival or they will 

leave the service station permanently as satisfied customers. The production firm may for 

various seasons stop the supply of the product at some time which make them zero 

instantaneously and start it again can be regarded as the occurrence of a catastrophe. 

Therefore, the proposed model is highly useful for dealing with real-world queueing 

situations in the environmental changing states and possibilities of catastrophes and 

feedback such as in manufacturing firms, banking or health sectors etc. 

 

7. Conclusion: 

In the present paper, we have established a finite capacity queueing system with 

catastrophes, feedback, state dependent service and environmental change and obtained 

the transient state solution. Also, steady state results and some interesting particular cases 

with (without) catastrophes and feedback are derived and discussed.   
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