

Evaluation of Anthelmintic activity of *Quillaja Saponaria* bark of Saponins on Indian Earthworms

Kamsala Anjali^{1*}, Rayadurgam Naveen², G. Sandeep Raj³, B. Sireesha³, N. Sowmya³, R. Sreenath³, S. Sudhakar Reddy³, N. Keerthana³

¹Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, K.R Palli Cross, Near SKU, Anantapur district, Andhra Pradesh-515721, India.

² Research scholar, Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru-562112

³Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, K.R Palli Cross, Near SKU, Anantapur district, Andhra Pradesh-515721, India.

***Corresponding author:** Kamsala Anjali

¹Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Chiyyedu, Ananthapuram, Andhra Pradesh, India. Email id: anjalik752@gmail.com, Mobile no:9398065890

Abstract:

Quillaja saponaria (fam: rosaceae) known as soap bark tree is a plant native to central Chile. Prior to anti-helminthic activity, it also shows other biological activities such as anti-inflammatory, Anti-viral, immuno stimulant. The current study Examines *Quillaja Saponaria* bark's anthelmintic activity against Indian Earthworms (*pheretima posthuma*). which is renowned for having a high saponin content. The phytochemical constituents of *Quillaja* bark are triterpenoids saponins, polyphenols, tannins, ethanol was used to extract *Quillaja Saponaria* bark. Earthworms Paralysis and Death times at Different concentrations (150,100,200mg/ml) were utilized to evaluate the extract's anthelmintic effects. The current study's findings support the theory that *Quillaja saponaria*'s anthelmintic activity could be caused by the presence of saponins.

Keywords: *Quillaja* bark, anthelmintic activity, albendazole induced in Indian earthworm

Introduction

Helminthiasis

"Helminths" is a Greek word that means "worms or caterpillar." Human-infecting parasites are classed as either inheritances or monuments. The parasites found in African ancestors are called Heirlooms, and those found in animals during our interactions with evolution, migration, and Monuments are agricultural techniques. Helminthic infections are the most prevalent infectious diseases in underdeveloped nations. Approximately two billion people, or more than 25% of the world's population, are afflicted with the helminthic parasite, which is a severe burden on developing nations, particularly on children¹.

The two main groups of helminths are called platyhelminths and nematodes. Nematodes, which include filarial worms that cause onchocerciasis and lymphatic filariasis (LF), and ground-carrying helminths, are also referred to as roundworms.

Some Flatworms, also known as flukes, schistosomes, and worms like tapeworms that cause cysticercosis, are members of the phylum platyhelminths. The terms trematode and cestode refer to worms and tapeworms, respectively. Hookworms (*Ancylostoma duodenale* and *Necator americanus*), whipworms (*Trichuris trichiura*), and roundworms (*Ascaris lumbricoides*) are the vectors of helminthiasis².

MATERIAL AND METHODS

Collection of Drug

Our experiment used a commercial saponin mixture that was derived from *quillaja* bark (Sigma-Aldrich) and that has quillaic acid, a triterpene, as its primary sapogenin³.

Chemicals and Reagents

Albendazole, *quillaja* bark, saline, water

Identification test for Saponins

Standard foam test: In a beaker, 300ml of hot distilled water was used to extract 3g of each dry plant powder after it had been weighed. The aqueous extracts were filtered, chilled, and then mixed before being kept for 24 hours at 4°C in an automatic refrigerator. Five milliliters of the plant extract were put into a test tube and mixed with five milliliters of distilled water. For two minutes, the mixture was forcefully shook. The presence of saponins was established by the formation of an emulsion upon the addition of olive oil or by the persistence of foam for at least fifteen minutes⁴.

Wet foam test: After diluting the test solution with water and aggressively shaking it for one to two minutes, a stable, foamy lather formed on the top of the sample test tube⁵.

Dry foam test: In a test tube, approximately 0.5 grams of the plant's crude powder were shaken with 5 milliliters of distilled water and heated in a water bath. The stable, persistent froth was then combined with three drops of olive oil and agitated rapidly. Emulsion development is a sign that saponins are present⁶.

Foam test for fresh samples: An electrical mixer was used to mix about 2 grams of fresh plant material (leaves) with 20 milliliters of distilled water (w/w = 1:10). The mixture was then filtered, and the filtrate was concentrated by evaporating it in a water bath to half its initial volume before being put into a test tube. Three drops of olive oil were added to the stable, persistent froth, and it was agitated violently before the emulsion formed, indicating the presence of saponin⁷

Experiment

Experimental animal model

Because of their morphological and physiological similarities to human intestinal roundworm parasites, healthy adult Indian earthworms (*Pheretima Posthuma*) were employed in this investigation⁸.

Worm Collections

Adult Indian earthworms (*Pheretima posthuma*) were gathered from the Anantapuram region's damp soil and thoroughly cleaned with water to get rid of any debris. Every earthworm that was used measured roughly 4–8 cm in length and 0.1–0.2 cm in breadth⁹.

Experimental Design

In the study, seven groups of earthworms of almost comparable size were used, with five earthworms in each group.

Preparation of doses of drug

To prepare the dose of drug at concentrations of 5, 10, 20 mg/mL; 50, 100, 200 mg of sample powder were taken and dissolved in little amount of water. Final volume was made up to 10mL using water to respective concentrations¹⁰.

Preparation of doses of Albendazole

50, 100, and 200 mg of powdered albendazole were taken and triturated with 0.2% v/v of Tween 80 as a suspending agent to create a standard dose of the drug at concentrations of 5, 10, and 20 mg/mL. The final volume was made up to 10 mL using water for the corresponding concentrations¹¹.

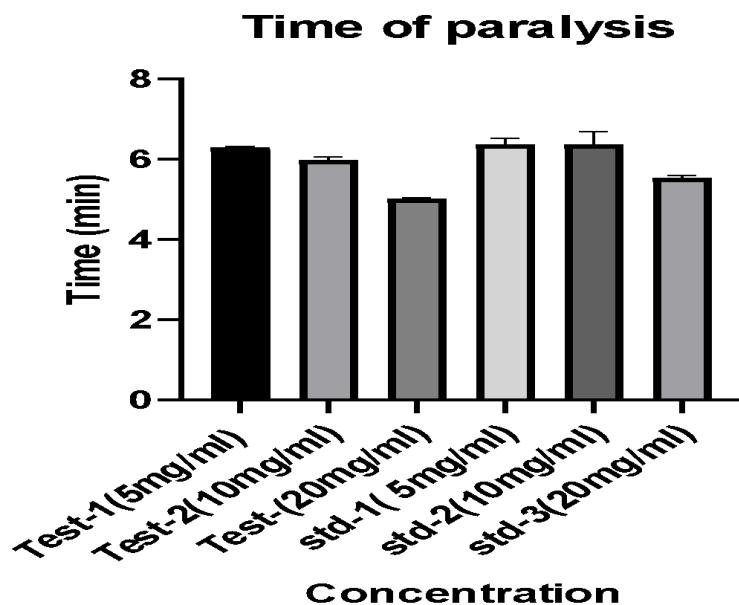
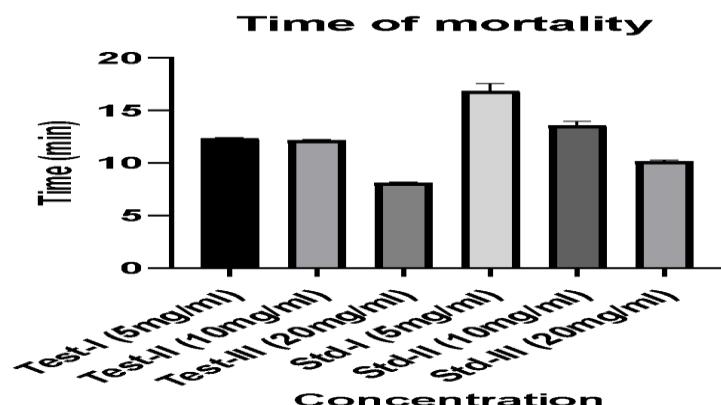
The study used seven groups of roughly equal size earthworms, with 4-6 earthworms in each group.

1	Group 1	Served as (Receives normal saline)
2	Group 2	Received 5mg/mL of QS
3	Group 3	Received 10mg/mL of QS
4	Group 4	Received 20mg/mL of QS
5	Group 5	Received standard drug Albendazole 5mg/mL,
6	Group 6	Received standard drug Albendazole 10mg/mL
7	Group 7	Received standard drug Albendazole 20mg/mL

The amount of time it took for the worms to become paralyzed and to die (the time of mortality) was noted. When there was no movement at all until the worms were shaken briskly, a period of paralysis was recorded. When the worms lost their ability to move despite shaking violently and their body color faded, the time of death (or time of mortality) was determined. A Mean \pm SEM of three worms per group was used to express all results.

Statistical Analysis:

Each group's mean \pm SEM is displayed, followed by a one-way ANNOVA. Results were deemed statistically significant if $p < 0.005$

RESULT:
Table 1: Identification test for Saponins

S.No	Tests	
1.	Typical foam test	+
2.	Test of wet foam	+
3.	New foam test sample	+
4.	Test of foam	+

Table 2: Effect of QS and Albendazole on *Pheretima posthuma*.

Group	Paralysis time(min)	Mortality time (min)
Control	-	-
Test-I (5mg/ml)	6.30± 0.00577***	12.4± 0.0252
Test-II (10mg/ml)	5.98±0.0418 ^{ns}	12.2± 0.0176 ^{ns}
Test-III (20mg/ml)	5.02±0.00882***	8.15± 0.0208***
Std-I (5mg/ml)	6.37±0.0882***	16.9± 0.406***
Std - II (10mg/ml)	6.37±0.186 ^{ns}	13.6± 0.208***
Std - III (20mg/ml)	5.53±0.0333***	10.2±0.0549***

Data generated represented as mean ±SEM (n=5) and significant changes were considered as When * (p value < 0.05), ** (p value < 0.01), *** (p value < 0.001)

Figure 1: Time of Paralysis

Figure 2: Time of Death

DISCUSSION

In the present work, the *Quillaja Saponaria* is evaluated to have Anthelmenthic activity against the adult Earthworms (Pheretima Posthuma) *Quillaja Saponaria* showed increase in the time of paralysis and time of mortality with dose dependent in comparison to standard drug (Albendazole).

CONCLUSION

Helminthiasis is one of the most frequent infections which is caused by the worms in GIT, Liver, and other organs. As currently available marketed drugs having many drawbacks with hepatotoxicity, loss of appetite, dizziness, headache, mental confusion, abdominal pain etc., So 80% of people on the planet rely on traditional medicinal plants and their extracts as they contain active constituents,secondary metabolites which meets the people health care needs with less adverse effects. The present study is on Quillaja saponaria bark of saponins are found to have low anthelminitic activity when compared to Albendazole.

REFERENCE

1. Michailidou, Georgia, et al. "Super-Hydrophilic and High Strength Polymeric Foam Dressings of Modified Chitosan Blends for Topical Wound Delivery of Chloramphenicol." *Carbohydrate Polymers*, vol. 208, Mar. 2019, pp. 1–13. DOI.org (Crossref), <https://doi.org/10.1016/j.carbpol.2018.12.050>
2. Drurey C, Maizels RM. Helminth extracellular vesicles: Interactions with the host immune system. *Molecular Immunology* 2021;137:124–33. <https://doi.org/10.1016/j.molimm.2021.06.017>.
3. Abdel-Reheim MA, Ali ME, Gaafar AGA, Ashour AA. Quillaja saponin mitigates methotrexate-provoked renal injury; insight into Nrf-2/Keap-1 pathway modulation with suppression of oxidative stress and inflammation. *Journal of Pharmaceutical Health Care and Sciences* 2024;10:17. <https://doi.org/10.1186/s40780-024-00330-4>.
4. More S, Sawarkar K, Mendhi S, Landge A, Jadhav Y, Sawandhkar P. A Review on Pharmacognostic and Pharmacological Effects and Action of Anthracene, Cardiac, and Saponin Glycosides. *Int J Pharm Sci Rev Res* 2023;78. <https://doi.org/10.47583/ijpsrr.2023.v78i01.002>.
5. Subiono T, Sadarudin, Tavip MA. Qualitative and quantitative phytochemicals of leaves, bark and roots of *Antiaris toxicaria* Lesch., a promising natural medicinal plant and source of pesticides. *Plant Science Today* 2023;10:5–10. <https://doi.org/10.14719/pst.1896>.
6. Astuti SM, Sakinah A.M M, Andayani B.M R, Risch A. Determination of Saponin Compound from *Anredera cordifolia* (Ten) Steenis Plant (Binahong) to Potential Treatment for Several Diseases. *JAS* 2011;3:p224. <https://doi.org/10.5539/jas.v3n4p224>.
7. CloseDeleteEdit
8. Durante M, Milano F, Caroli MD, Giotta L, Piro G, Mita G, et al. Tomato Oil Encapsulation by α -, β -, and γ -Cyclodextrins: A Comparative Study on the Formation of Supramolecular Structures, Antioxidant Activity, and Carotenoid Stability. *Foods* 2020;9:1553. <https://doi.org/10.3390/foods9111553>.
9. Vadakkan K, Cheruvathur MK, Chulliparambil AS, Francis F, Abimannu AP. Proteolytic enzyme arbitrated antagonization of helminthiasis by *Cinnamomum cappa* leaf extract in *Pheretima posthuma*. *Clinical Phytoscience* 2021;7:23. <https://doi.org/10.1186/s40816-021-00261-9>.
10. Adate PS, Parmesawaran S, Chauhan Y. In vitro Anthelmintic Activity of Stem Extracts of *Piper betle* Linn Against *Pheritima Posthuma*. *Pharmacognosy Journal* 2012;4:61–5. <https://doi.org/10.5530/pj.2012.29.10>.
11. Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Van Humbeeck J, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. *European Journal of Pharmaceutics and Biopharmaceutics* 2008; 69:223–30. <https://doi.org/10.1016/j.ejpb.2007.11.006>.
12. Alvi Z, Akhtar M, Rahman NU, Hosny KM, Sindi AM, Khan BA, et al. Utilization of Gelling Polymer to Formulate Nanoparticles Loaded with Epalrestat-Cyclodextrin Inclusion Complex: Formulation, Characterization, In-Silico Modelling and In-Vivo Toxicity Evaluation. *Polymers* 2021;13:4350. <https://doi.org/10.3390/polym13244350>.