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1. Introduction:  

Maintaining the dependability and safety of electrical systems depends on the detection and 

classification of electrical faults because it enables possible problems to be addressed before they 

become serious failures or hazards[1]. Effective fault detection methods contribute to minimizing 

downtime, lowering maintenance expenses, and optimizing overall system performance [2]. Over 

time, various techniques have been developed for accurate fault identification, ranging from 

conventional relay-based systems to cutting-edge approaches that leverage artificial intelligence 

and machine learning [3]. These cutting-edge technologies facilitate predictive maintenance plans 

in addition to improving the speed and accuracy of issue detection, hence enhancing system 

efficiency and resilience [4]. Fault diagnosis is important because it can stop catastrophic failures 

that could result in costly repairs, severe injuries, or even fatalities[5]. By implementing robust 

fault detection systems, organizations can maintain uninterrupted operations while preserving the 

integrity of their electrical infrastructure [6]. This proactive strategy not only reduces downtime 

but also promotes a safer working environment, ultimately boosting productivity and lowering 
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operational expenses. Electrical faults can take various forms, including short circuits, overloads, 

ground faults, and open circuits. Each type presents distinct challenges and requires specialized 

detection methods to ensure timely intervention and resolution [7]. A thorough understanding of 

these faults how they behave and what risks they pose is essential for developing effective 

detection strategies tailored to specific electrical systems [8]. The primary objectives of this paper 

include a comprehensive review of different fault detection techniques, an analysis of the 

challenges in accurately identifying and classifying faults, and an exploration of how these 

advancements contribute to improving overall system reliability and safety. By delving into these 

aspects, this study aims to establish a framework that organizations can leverage to enhance their 

fault detection capabilities, minimize downtime, and reduce maintenance costs. 

2. Literature Review: 

Table 1 presents a comparative analysis of multiple research studies focused on fault detection 

methods in electrical power systems. It outlines the methodologies employed, summarizes key 

findings, and identifies existing research gaps. This comparison provides insightful information 

about how well different machine learning and deep learning methods classify and detect faults. 

 

Table 1. Comparative Analysis of Fault Detection Methods in Electrical Power Systems 

Author Method Results Research Gap 

 

[9] 

Multiple Classifier System (MCS) 

approaches, META-DES for fault 

detection in electrical power 

systems. 

MCS approaches outperform 

single models; META-DES 

shows resilience to noise. 

Monolithic models struggle with 

adaptability, imbalance, and noise 

handling. Further exploration of 

ensemble methods needed. 

 

 

[10] Deep learning (LSTM) based fault 

detection, classification, and fault 

location estimation. 

 

LSTM-based method 

demonstrated high accuracy in 

fault detection and precise fault 

location estimation. 

Modern ML approaches in fault 

analysis are still developing. 

Performance under diverse 

conditions needs further study. 

 

 

[11] 

 

Random Forest classifier applied 

to a power grid model in 

MATLAB-SIMULINK. 

 

Random Forest achieved 100% 

healthy operation detection and 

96% fault detection accuracy. 

 

Study lacks consideration of 

environmental factors and 

scalability to larger grid systems. 

 

 

[12] 

 

Multiple ML models (SVM, 

Decision Tree, KNN, Random 

Forest) for fault detection. 

All models achieved over 99% 

accuracy, with SVM reaching 

99.6% accuracy. 

No discussion on practical 

application and integration into 

existing power systems. 

 

 

[13] 

 

Random Forest model for 

detecting physical and electrical 

faults in PV array systems. 

Random Forest achieved 98.6% 

detection accuracy and 94.2% 

classification accuracy. 

Synthetic training data raises 

concerns about real-world 

applicability and robustness. 

 

 

[14] 

 

ML models (SVM, Random 

Forest, Decision Tree, XGB, 

Ensemble techniques (Random 

Forest, XGB, and Decision Tree) 

Implementation challenges, data 

quality, and model interpretability 

not addressed. 
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Logistic Regression) for detecting 

electrical irregularities in 

transmission lines. 

improved fault detection 

accuracy. 

 

 

[15] 

 

Support Vector Machine (SVM) 

classifier trained on real-time 

electrical system data. 

SVM classifier effectively 

detects faults using real-time 

sensor data. 

Does not explore integration of 

other ML methods to enhance 

robustness and accuracy. 

 

 

[16] 

 

Deep learning (LSTM) model for 

early fault detection in Electrical 

Power Transmission Networks 

(EPTN). 

LSTM model achieved 99.65% 

accuracy, outperforming NN and 

CNN models. 

Challenges of real-time 

implementation and integration into 

existing systems not discussed. 

 

This comparative analysis demonstrates that while machine learning and deep learning models 

generally achieve high accuracy in fault detection, several challenges remain. Key research gaps 

include improving adaptability to real-world conditions, enhancing model robustness against 

environmental variations, and ensuring seamless integration with existing power system 

management frameworks. Addressing these issues in future studies will be essential to improving 

the reliability and scalability of fault detection systems. 

3. Proposed Approach 

The Figure 1 illustrates Basic power transmission system with a fault section including key 

components. 

Figure 1. Basic power transmission system with a fault section 

3.1. Data Source & Data Specification 

The dataset used for this study is sourced from [17] [18], the dataset consists of 7,861 entries and 

11 features, primarily focusing on electrical parameters related to power system faults. The 

columns include four categorical or binary variables (G, C, B, A), three-phase current 

measurements (Ia, Ib, Ic), and three-phase voltage measurements (Va, Vb, Vc). The target variable, 

"Fault Type," is binary, indicating whether a fault occurred (1) or not (0). Notably, there are no 

missing values, making it suitable for machine learning applications.  

3.2 Flow chart 

The Figure 2. Shows flowchart, this flowchart represents the pipeline for developing a machine 

learning model. Data preparation, which includes data distribution analysis, correlation analysis, 

and standardization, comes after data collection. Next, machine learning models, such as Logistic 
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Regression and Random Forest, are trained and tested. After testing, the model undergoes 

evaluation to determine its performance. If the model is satisfactory, it is finalized as the Final 

Model. However, if the model does not meet expectations, hyper parameter tuning using 

GridSearchCV is performed, and the model is retrained and re-evaluated until it reaches an 

acceptable performance level. 

 

Figure 2. Flowchart of the machine learning model 

3.3 Data Preprocessing  

The pair plot (scatter matrix) visualization, which illustrates the interactions between several 

variables in a dataset, is shown in Figure 3. The off-diagonal plots show scatter plots comparing 

several feature pairings, while the diagonal plots show the distribution of each variable.. The color 

coding represents different fault types (0 and 1), indicating that the dataset contains labeled 

instances for classification. The ellipses highlight data clusters and correlations between features. 

This visualization helps in understanding the feature relationships, separability of fault types, and 

possible patterns in the dataset. The Figure 4 presents histograms displaying the distribution of 

current (Ia, Ib, Ic) and voltage (Va, Vb, Vc) values in the dataset. The current distributions (Ia, Ib, 

Ic) show a bimodal pattern, indicating the presence of two distinct groups corresponding to 
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different fault conditions. The voltage distributions (Va, Vb, Vc) appear more spread out, with 

multiple peaks, suggesting variations in voltage levels due to system disturbances or faults. These 

distributions provide insight into how different electrical parameters behave and can help in 

identifying patterns associated with different types of faults. The Figure 5 shows correlation 

heatmap illustrates the relationships between various electrical parameters, including line currents 

(Ia, Ib, Ic) and voltages (Va, Vb, Vc), along with their association with the fault type. Notably, 

there is a negative correlation between Ia and Ib (-0.37), as well as between Ib and Ic (-0.53), 

suggesting an inverse relationship among line currents. Similarly, the voltages Va, Vb, and Vc 

exhibit moderate negative correlations, indicating interdependencies between line voltages during 

fault conditions. The Fault Type shows weak correlations with individual parameters, with the 

highest being with Ia (0.03), Ic (0.11), and Vc (0.035).  
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Figure 3. Pair Plot Visualization 
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Figure 4. Distribution Analysis 

 
Figure 5. Feature Correlation Heatmap 
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Figure 6. Voltage Waveforms under Different Fault Conditions 

The Figure 6. shows Voltage Waveforms under Different Fault Conditions,  it displays the line 

voltages (Va, Vb, Vc) under different fault conditions in a power system. The top subplot 

represents the normal operating condition, showing balanced sinusoidal waveforms for all three 

phases. In contrast, the subsequent plots illustrate various fault types, such as Line-to-Line (LL), 

Line-to-Ground (LG), and combinations like LLG (Line-Line-Ground) and LLLG (Three-Line-

Ground). Each fault type introduces disturbances, leading to distortions in voltage waveforms. For 

instance, in LLLG faults, all three line voltages are significantly reduced, indicating a severe fault. 

LG faults show asymmetrical distortions due to unbalanced fault currents. Such visual analysis 

aids in understanding fault behavior and validating machine learning models for fault 

classification. 
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Figure 7. Current Waveforms under Different Fault Conditions 

 

The Figure 7.  illustrates different fault conditions in a three-phase electrical system by showing 

the variations in line currents (Ia, Ib, and Ic) over time. The first plot represents the normal 

operating condition where all three-phase currents are balanced and sinusoidal. As faults occur, 

the waveforms become distorted, indicating abnormal current flows. In a Line-Line-Ground (LLG) 

fault (A-B-G), the currents in the affected phases (Ia and Ib) show significant disturbances, while 

Ic remains relatively unchanged. A more severe Line-Line-Line-Ground (LLLG) fault (A-B-C-G) 

affects all three phases, leading to high fault currents. In a Line-to-Ground (LG) fault (A-G), only 

one phase current (Ia) is affected, while the others remain stable. A Line-Line-Line (LLL) fault 

(A-B-C) causes symmetrical disturbances in all three phases, making it one of the most severe 

fault types. Lastly, a Line-to-Line (LL) fault (B-C) impacts two phases (Ib and Ic), while the 

unaffected phase (Ia) remains stable. In power system analysis, these defects are essential because 

they aid in problem diagnosis and preventive action implementation.  

4. Results and Discussion 

The Figure 8 presents four confusion matrices evaluating Logistic regression and Random Forest 

models. Poor performance is shown by the first model's large number of false positives and false 

negatives, which result in considerable misclassifications. The second matrix, representing 

Logistic Regression with GridSearchCV, performs slightly better but still exhibits notable 
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misclassification errors. In contrast, the third model demonstrates near-perfect classification, with 

only two false positives. The fourth matrix, representing a Random Forest model with 

GridSearchCV, achieves perfect classification with no misclassifications. This comparison 

highlights the superior performance of the Random Forest model after hyper parameter tuning, 

emphasizing the importance of model selection and optimization for achieving high accuracy. 

 

 
Figure 8. Confusion Matrix     

 

The table 2. Shows Performance Metrics comparison between Logistic Regression and Random 

Forest models highlights significant differences in classification effectiveness. Logistic 

Regression, without hyper parameter tuning, achieves a modest accuracy of 59.51%, performing 
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better in detecting faults (F1-score: 0.66) than no-fault conditions (F1-score: 0.51). With hyper 

parameter tuning, its accuracy slightly improves to 62.31%, with optimized parameters (C=10, 

penalty='l2', solver='saga'), though it still struggles in classification. In contrast, the Random Forest 

model demonstrates exceptional performance, achieving 99.91% accuracy without tuning and a 

perfect 100% accuracy after hyper parameter optimization. The tuned Random Forest model, using 

parameters like criterion='gini', max_depth=10, min_samples_leaf=1, min_samples_split=5, and 

n_estimators=40, flawlessly classifies fault and no-fault conditions. This comparison underscores 

the superiority of Random Forest in fault classification and emphasizes the impact of 

hyperparameter tuning in enhancing model performance. 
Table 2. Performance Metrics 

Model (Logistic regression) Test 

Accuracy 

(%) 

Fault 

Conditions 

Precision Recall F1-

Score 

Without Hyper parameter 

Tuning 59.51 No Fault 

0.69 0.4 0.51 

  Fault 0.56 0.8 0.66 

Best parameters are: 

{'C': 10, 'penalty': 'l2', 'solver': 'saga'} 

With Hyper parameter Tuning 62.31 No Fault 0.74 0.43 0.54 

    Fault 0.57 0.84 0.68 

 

Model (Random Forest) Test 

Accuracy 

(%) 

Fault 

Conditions 

Precision Recall F1-

Score 

Without Hyper parameter 

Tuning 99.91 No Fault 

1.0 1.0 1.0 

  Fault 1.0 1.0 1.0 

Best parameters are: 

{'criterion': 'gini', 'max_depth': 10, 'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimators': 40} 

With Hyperparameter Tuning 100 No Fault 1.0 1.0 1.0 

    Fault 1.0 1.0 1.0 

 

 

Conclusion: 

This study underscores the power of machine learning in electrical fault classification, comparing 

the performance of Logistic Regression and Random Forest. The findings reveal that Logistic 

Regression, even with hyper parameter tuning, struggles to achieve high accuracy, peaking at just 

62.31%. In contrast, Random Forest demonstrates exceptional performance, achieving an 

impressive 99.91% accuracy without tuning and a flawless 100% accuracy after optimization. 

These findings demonstrate how important model selection and hyperparameter tuning are to 

improving the accuracy of fault identification. The study confirms that Random Forest is a highly 

reliable approach, delivering robust and precise classification. Looking ahead, future research 
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could explore additional real-world constraints, refine feature selection techniques, and investigate 

deep learning methodologies to further improve classification accuracy and overall system 

reliability. 
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