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Abstract: In the field of histological image analysis for Oral Squamous Cell Carcinoma (OSCC), few studies 
have explored the integration of stain normalization methods as a preprocessing step in deep learning work-
flows. Standard Hematoxylin and Eosin (H&E) staining techniques are commonly used for tissue visualization, 
where Hematoxylin highlights cell nuclei in blue and Eosin colors the cytoplasm, muscle fibers, and other com-
ponents in pink. Our research investigates the impact of applying Reinhard’s color transfer technique for stain 
normalization on the performance of deep learning models for semantic segmentation. We propose that stain 
normalization not only enhances model robustness but also serves as an effective data augmentation strategy, 
which is especially valuable given the limited availability of OSCC histological data. To accommodate hardware 
constraints while maintaining high performance, we employ a lightweight UNet architecture with an EfficientNet 
backbone. This model strikes a balance between computational efficiency and accuracy, achieving results 
comparable to those of the widely adopted ResNet models, which are often considered the gold standard in 
Convolutional Neural Network (CNN) architectures. Our findings support that stain normalization can serve as 
a valuable data augmentation method, enhancing the effectiveness of deep learning models in histological 
segmentation tasks for OSCC. 

 

Keywords: OSCC, stain normalization, semantic segmentation, data augmentation, UNET. 

 
1. Introduction 
Oral Squamous Cell Carcinoma (OSCC) constitutes approximately 90% of all oral malignancies, serves as the 
leading cause of human mortality among all oral cancers [28,29]. Originating from the stratified squamous 
epithelium which is a component of the oral mucosa, this tumour has been accounted for 377,713 OSCC cases 
globally in 2020 according to the Global Cancer Observatory (GCO) [30,31]. Males are mostly affected by Oral 
Squamous Cell Carcinoma OSCC in comparison with females, where men in their mid-age are the most vul-
nerable [32]. Pathogenic bacteria, particularly Porphyromonas gingivalis, Fusobacterium nucleatum and 
Prevotella intermedia, can be closely linked to Oral Squamous Cell Carcinoma (OSCC) [33].  The hematoxylin 
and eosin (H and E) stain is a universally adopted and robust stain which serves as a primary contrast method 
in diagnosis of biopsy specimen [34]. The H and E stain is essential for pathologists in daily diagnostic work in 
providing detailed views of tissue structures, including cell nuclei, cytoplasm, and extracellular components. 
For over 150 years, this staining procedure remains unchanged. [9]. 
A robust segmentation model necessitates a potent backbone network serving as an encoder, proficient in 
capturing multi-scale information, adept at preserving spatial details, and characterized by low computational 
complexity[13] . The domain of oral cancer segmentation via deep learning methodologies is notably 
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constrained, with current efforts predominantly relying on the ORCA[1] and OCDC[21] datasets, which are 
publicly accessible online. 
In recent advancements within medical image processing, transformer-based models have emerged as domi-
nant in semantic segmentation, exhibiting exceptional performance in extracting spatial information from im-
ages[15], [16], [17]. The self-attention mechanism, introduced by Vaswani et al.[22] , excels in capturing global 
interactions among input vectors. This innovative approach was directly applied in Vision Transformers (ViT) 
by Alexey et al[10]. on image patches to encapsulate global interactions among individual pixels. Subsequent 
methodologies have been proposed to compute self-attention with reduced computational demands[12], [13], 
[17]. Nevertheless, our research emphasizes the impact of image preprocessing techniques on model perfor-
mance. 
The exploration of image preprocessing methods within the context of histological images remains sparse. 
Despite the proposition of various preprocessing techniques such as histogram equalization algorithms[23] , 
intensity correction[24] , gamma correction[25] , and convolution-based methods like blurring, edge enhance-
ment, and sharpening[23] , no substantial improvements in accuracy have been documented. Techniques like 
Retinex and Multiscale Retinex perform optimally in low illumination and fuzzy enviroments[18] . However, our 
literature review indicates a lack of re-search on stain normalization as a preprocessing strategy for histological 
images in OSCC (Oral Squamous Cell Carcinoma). 
Stain normalization is crucial due to the color variations observed in histological images, which arise from 
different scanners, slide preparation techniques, staining procedures, stain concentrations, temperatures, and 
other factors [19]. Our proposed methodology utilizes Reinhard’s color transfer algorithm for stain normalization 
[20]. This technique, though simple, proves highly effective when an appropriate reference image is selected. 
We have further enhanced this algorithm to emphasize the cell nuclei regions within the images by iteratively 
selecting pixel regions where the blue channel exhibits dominant intensity values. This enhancement contrib-
utes to more stable training and improved generalization capabilities of the model. Given our hardware re-
source constraints, we have opted for the lightweight EfficientNet[26] as the encoder within the UNet[27] archi-
tecture. EfficientNet is an optimal choice due to its balance between model complexity and performance, 
achieved through a principled compound scaling method that uniformly scales the network’s depth, width, and 
resolution. 
 
2. Related Works 
Deep learning is poised to revolutionize the diagnosis and prognosis of Oral Squamous Cell Carcinoma(OSCC) 
by extracting intricate visual patterns from histological images. Ahmed et al. [4] proposed a novel attention 
block called as CSAF that could emphasize important channel and spatial areas. Their observations indicated 
that using attention mechanisms along with residual connections and ASPP gives significant improvement over 
the baseline UNet model. Jelena et al. [3] proposed a 2-stage multiclass grading system where the first stage 
included data augmentation, training classification model, preprocessing data with SWT functions and selected 
model was used as a backbone for the DeepLabv3+ semantic segmentation model. Ac-cording to the obser-
vations Xception model as backbone with Haar SWT function gave the best results. Andrea et al.[2] worked 
with an ensemble learning approach where multiple classification networks each taking different tiles of a split 
image as input were used as backbone for the Unet architecture with a single decoder. The Oral Cancer An-
notated(ORCA) dataset introduced by Martino et al.[1] trained the dataset with four deep learning methods, the 
observations indicated that combining R channel of RGB with V channel of HSV colour space gave optimal 
results.  
Since the proposal of Vision Transformers(ViT)[10] used for image classification, the self attention mechanism 
has paved its way to semantic segmentation due to its ability to capture long range interdependencies between 
pixels.  The UNetR model for volumetric image segmentation proposed by Ali et al.[16] implemented the trans-
former in a U shaped encoder decoder architecture similar to UNet. The output of the transformer is reshaped 
and downsampled to different dimensions to feed to the de-coder which comprises of convolutional layers. An 
advancement of the UNetR architecture proposed by Abdelrahman et al.[17] the UNetR++ uses an efficient 
EPA block to compute channel wise and spatial wise self attention parallelly. To bridge the semantic gap be-
tween encoder and decoder the DCA attention block proposed by Gorkem et al.[35] takes input from all the 
encoders and computes channel and spatial cross attention to capture long range dependencies. Hao et al.[15] 
also worked with multi scale features by computing the cross attention between two parallel Axial attentions[12] 
to capture global information. 
Histological tissues are naturally transparent, requiring staining for proper visualization. Hematoxylin and Eosin 
(H&E) is a commonly used staining combination, where hematoxylin stains cell nuclei blue, and eosin stains 
cytoplasmic components and extracellular matter pink. However, variations in staining can significantly impact 
the accuracy of automatic image analysis, making stain normalization essential. This area of research has 
seen significant advancements, with various algorithms being developed to address the challenge. Hoque et 
al. [19] introduced a method that decomposes images into individual stain components, followed by 
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normalization based on illumination conditions using the Multiscale Retinex algorithm. Babak et al. [36] pro-
posed the Whole Slide Images Color Standardizer (WSICS) algorithm, which utilizes spatial information and 
the HSD color model for precise stain differentiation. The WSICS algorithm also applies weighted smoothing 
to ensure artifact-free standardization, making it highly effective in mitigating staining variations. A study closely 
related to our work is the research by Francesco et al. [37], which focused on stain normalization in colorectal 
cancer tissues. Their findings demonstrated that using the WSICS algorithm significantly enhanced the perfor-
mance of deep learning models, underscoring its importance in this domain. 
 
3. Methodology 
In this section we focus on the dataset details and the preprocessing methods used, details about the archi-
tecture of the model to be used and the loss function. 
 
3.1. Datasets 
We used two publicly available datasets for our experiment with stain normalization techniques with deep 
learning: OCDC(Oral Cavity Derived Cancer)[21] dataset and ORCA(Oral Cancer Annotated)[1] dataset.  
The OCDC dataset consists of 1,020 histological images, meticulously labeled and validated by expert 
pathologists for binary classification, distinguishing between tumor and non-tumor regions. This dataset is 
structured with 840 images designated for training and 180 images reserved for testing, specifically addressing 
the binary class segmentation problem of identifying tumor and non-tumor areas within histological samples. 
Each image in the dataset is sized at 640x640 pixels and has been digitized at a 20x magnification level. The 
original images were captured as Whole Slide Images (WSI) using the Slide Scanner Aperio AT2 at 20x mag-
nification. These tissue specimens were sourced from the archives of the Department of Oral and Maxillofacial 
Pathology at the Federal University of Uberlandia. The images depict tissue sections that encompass a variety 
of cellular and structural elements, including blood vessels, keratin, lymphocytes, glands, muscle, and tumor 
cells. The diversity of these elements within the tissue sections presents a challenging and realistic scenario 
for the binary classification of tumor and non-tumor regions, making the OCDC dataset a valuable resource for 
advancing research in histopathological image analysis. 
Our second dataset, ORCA, comprises 100 samples used for both training and testing, derived from The Can-
cer Genome Atlas (TCGA) dataset. The Cancer Genome Atlas, provided by the National Cancer Institute (NCI), 
includes clinicopathological data and unannotated Whole Slide Images (WSIs) of over 20,000 primary cancer 
cases, spanning 33 different cancer types. Each ORCA image has a high resolution of 4500x4500 pixels and 
is categorized into three distinct classes: carcinoma pixels, non-carcinoma tissue pixels, and non-tissue pixels. 
The dataset includes a variety of color stains, reflecting the diverse staining techniques used in histopathology. 
These variations enhance the dataset's complexity, making it an invaluable resource for advancing the analysis 
of different cancer types and improving the robustness of diagnostic algorithms. 
 
3.2. Stain Normalization 
In our work, we utilized Reinhard’s color transfer algorithm [20]. The first step involves converting the image to 
LAB color space to separate luminance and chromaticity components. The algorithm aims to standardize each 
image by transforming it so that the mean and standard deviation of its color channels match those of a refer-
ence image selected by the user. This process ensures consistency across all images in the dataset. Equation 
1 outlines the process where i and j are the row and column positions in the image matrix x. For an input image 
matrix x, we first compute the z-score for every pixel value to preserve the relative positions of the data. This 
involves normalizing the pixel values by subtracting the mean of the input image and dividing by its standard 
deviation. Next, we multiply the result by the standard deviation σ_R of the reference image, aligning the input 
image's standard deviation with that of the reference. Finally, we shift the mean of the input image from 0 to 
the mean of the reference image ¯x_R by adding ¯x_R. This ensures that the input image has the same mean 
and standard deviation as the reference image, effectively standardizing the color distribution.  
 

𝑥𝑖𝑗 = 𝑧𝑖𝑗 ⋅ 𝜎𝑅 + 𝑥‾𝑅    (1) 
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Figure 1. Samples of ORCA dataset(first row) along with its stain normalized transformation(second 

row). 
 

3.3. Unet Efficientnet 
We employed the UNet architecture [27] with EfficientNetB0 [26] as the backbone. EfficientNet is renowned for 
its high accuracy, while also being lightweight and computationally efficient. The main building block for the 
encoder backbone is the Mobile Inverted Bottleneck (MBConv) block. As illustrated in Figure. 2, the MBConv 
block begins by expanding the number of channels using 1x1 convolutions denoted by Ex(. ) in Equation 2. 
This is followed by a Depthwise Convolution, which is then enhanced by Squeeze-and-Excitation attention 
denoted by D (.) and Se (. ) respectively in Equation 2. Finally, the block contracts the number of channels back 
using another set of 1x1 convolutions denoted by Cn (. ) in Equation 2, thus earning the name "inverted bottle-
neck." Additionally, a residual connection is incorporated to facilitate gradient flow. 
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Figure 2. Overview of the MBConv Block used as basic building blocks in models belonging to Effi-
cientNet family. 

 
Figure 3. Architecture of the UNet-EfficientNet model with input as images with dimensions of 

256x256x3, and the output is of size 256x256xn, where n represents the number of target classes. 
 

Equations 2 and 3 define the operations for the Encoder and Decoder within the U-Net architecture, respec-

tively. In this context,  𝐗𝐄𝐧
𝐢  represents the feature map output from the 𝑖-th MBConv block, while  𝐗𝐃𝐞

𝐣
  and 

𝐗𝐄𝐧
𝐣

 denotes the 𝑗-th encoder and decoder blocks. The 𝐶𝐵𝐴𝑅 (. ) operation involves concatenating the feature 

map from the encoder's skip connection with the upsampled feature map from the preceding decoder block. 
This concatenated feature map undergoes a series of transformations: a 3x3 convolution, followed by batch 
normalization, activation, and finally, a residual connection. The symbols for ReLu, Batch normalization and 
3x3 Convolution are denoted by  𝛿 (. ), 𝐵𝑁 (. ) and 𝐶3×3 ( . ) respectively where  𝑋 is the input for the CBAR 
function in Equation 4.  
 

 𝐗𝐄𝐧
𝐢 = 𝑪𝒏 (𝑺𝒆 (𝑫 (𝑬𝒙 ( 𝐗𝐄𝐧

𝐢−𝟏 ) ) ) )   +   𝐗𝐄𝐧
𝐢−𝟏 (2) 

 

 𝐗𝐃𝐞
𝐣

= 𝐶𝐵𝐴𝑅 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝐗𝐄𝐧
𝐣

 ,  𝑈(𝐗𝐃𝐞
𝐣−𝟏

 ) ) )   (3) 

 
𝐂𝐁𝐀𝐑 ( 𝐗 ) = 𝜹 (𝑩𝑵 (𝑪𝟑×𝟑 ( 𝑿 ) )   +  𝑿      (4) 

 
3.4. Loss Function 
Our approach combines two loss functions, each targeting a critical aspect of effective semantic segmentation. 
The first is the Dice loss function[39], which promotes greater overlap between the predicted segmentation and 
the ground truth. By minimizing the Dice loss, we guide the model to converge towards an optimal alignment 
between prediction and reality. The Dice loss function, as defined in Equation 5, inversely correlates with the 
Dice coefficient—where a higher Dice coefficient indicates better overlap. Therefore, by subtracting the Dice 
coefficient from 1, we transform it into a loss function, where a lower Dice loss signifies more substantial over-
lap, and a higher Dice loss indicates less overlap. 
The second loss function employed is the Focal Loss[38], specifically designed to address class imbalance 
issues. As illustrated in Equation 6, Focal Loss modifies the standard cross-entropy loss to focus on hard-to-
classify examples, rather than being dominated by easy, well-classified instances. It introduces a modulating 
factor that downweights the influence of easy predictions while upweighting those that are difficult to classify. 
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This adjustment ensures that the model pays more attention to challenging cases, leading to a more balanced 
and robust segmentation performance. In equation 6 the expression for dice loss function is expressed where 
𝑃𝑡𝑟𝑢𝑒 is the ground truth probability for a pixel (usually 1 for foreground and 0 for background in binary seg-
mentation). 
𝑃𝑝𝑟𝑒𝑑  is the predicted probability of the pixel belonging to the foreground (output from the model, typically 

between 0 and 1). 𝜉 is a small smoothing constant added to avoid division by zero, typically a very small value. 

The expression for focal loss is defined in equation 8 where  𝑝𝑡  is the transformed probability based on 
whether the pixel is from the foreground or background and 𝛾 is the focusing parameter that controls the 
weight given to hard examples. Equation 9 expresses the summation of dice loss and focal loss. 
 

𝐃𝐋 ( 𝐏𝐭𝐫𝐮𝐞  ,  𝐏𝐩𝐫𝐞𝐝  )   =  1  −  
2  ∗   𝑃𝑡𝑟𝑢𝑒   ∗   𝑃𝑝𝑟𝑒𝑑   +  𝜉

𝑃𝑡𝑟𝑢𝑒   +   𝑃𝑝𝑟𝑒𝑑   +  𝜉
      (5) 

 

𝐩𝐭 = {
𝒚pred if 𝒚true = 𝟏

𝟏 − 𝒚pred if 𝒚true = 𝟎 
   (6) 

 
𝐅𝐋 ( 𝐏𝐭 )   =   − ( 1 − 𝑃𝑡  )𝛾  𝑙𝑜𝑔 ( 𝑃𝑡  )      (7) 

 

𝐓𝐋 ( 𝐏𝐭𝐫𝐮𝐞  ,  𝐏𝐩𝐫𝐞𝐝  )   =  𝐹𝐿 ( 𝑃𝑡  )   +  𝐷𝐿 ( 𝑃𝑡𝑟𝑢𝑒  ,  𝑃𝑝𝑟𝑒𝑑  )      (8) 

 
4. Experiments and Results 
4.1. Evaluation Metrics 
In this work, we will evaluate the performance of our model on both the normal and stain-normalized datasets 
using several key metrics: Jaccard's coefficient(IoU), mean Intersection over Union (mIoU), Dice coefficient, 
accuracy, precision, and error rate. The mathematical expressions for these metrics are provided below. 
 

Table 1. Architecture of EfficientNet B0 model excluding the Fully Connected layers. 

CONV BLOCK STAGE NUMBER 

Conv, 3 x 3  

MBConv1, 3 x 3 Block 1 

MBConv6, 3 x 3 
MBConv6, 3 x 3 

Block 2 

MBConv6, 5 x 5 
MBConv6, 5 x 5 

Block 3 

MBConv6, 3 x 3 
MBConv6, 3 x 3 
MBConv6, 3 x 3 

Block 4 

MBConv6, 5 x 5 
MBConv6, 5 x 5 
MBConv6, 5 x 5 

Block 5 

MBConv6, 5 x 5 
MBConv6, 5 x 5 
MBConv6, 5 x 5 
MBConv6, 5 x 5 

Block 6 

 

IoU =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 
     (9) 
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mean IoU =
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝑁

𝑖=1

     (10) 

Dice =
2 ⋅ 𝑇𝑃

2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
      (11) 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
     (12) 

 

Error Rate =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
       (13) 

 
The terms TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative, respec-
tively, and are fundamental in understanding the performance of classification models. 
 
4.2. Experimental Settings 
In our experiments, we utilized the TensorFlow 2.10 deep learning framework to train our model, leveraging 
the computational power of an Nvidia RTX 3080 GPU. This GPU, with its 10,496 CUDA cores and 10GB of 
GDDR6X memory, allowed for efficient parallel processing and accelerated the training and inference phases 
of our work. The model was trained using the Nadam optimizer, which combines the benefits of both the 
Nesterov-accelerated gradient and Adam optimization methods. We set the learning rate to 0.001 and trained 
the models for 30 epochs on both the ORCA and OCDC datasets. A batch size of 16 was used throughout the 
training process to balance memory usage and convergence speed. 
To enhance the robustness of our models, we implemented data augmentation techniques using Keras's Im-
ageDataGenerator. Specifically, we applied horizontal and vertical flips to the training images, which helped 
increase the diversity of the training data and improve the model's generalization capabilities. Additionally, we 
propose that stain normalization could serve as an excellent data augmentation technique for histological im-
ages, potentially enhancing the model's ability to handle variations in staining across different samples. 
 
4.3. Experiments on ORCA Dataset 
The ORCA dataset consists of 100 validation samples and 100 test samples. Since the training samples used 
by Martino et al. [1] are not publicly available, we utilized samples from both the validation and test sets to 
create our training set. The original image resolution is quite high at 4500x4500 pixels. Given our computational 
resource limitations, we first resized the images to 1024x1024 pixels, followed by dividing them into patches of 
256x256 pixels each. Reducing the size of the resized images increases the coverage of global regions by the 
patches. Initially, we tried resizing the images to 512x512 pixels and applied the same patch size of 256x256, 
but found that resizing to 1024x1024 pixels yielded better results. After resizing and patching the images from 
both sets, we shuffled them, using 2080 samples for the training set, 320 for validation, and 800 for testing. 
However, we believe that using various color stained image as reference image and performing stain normali-
zation on the dataset for various stainings can significantly enlarge the dataset size and hence this technique 
can be a good augmentation technique for better generalization of the model to address dataset size problem. 
The comparative analysis between the stain-normalized and non-stain-normalized datasets is summarized in 
Table 2. Results conclude that stain normalization does not improve the performance of our model. The first 
row where 0 reference images are used are the observations of the non-stain normalized dataset. Second row 
shows the effect of using a single uniform color stain over the dataset. Lastly we used stain normalization as a 
data augmentation technique by using 7 different reference images. 
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Figure 4. The seven different color stains used as reference images to stain normalize ORCA dataset. 

Using seven reference images increased the size of dataset by eight times. 
 

Table 2. Observations for the ORCA dataset. 

No. of reference 
images 

Mean IoU Dice Accuracy Error rate 

0 82.51% 89.00% 90.54% 6.70% 

1 80.89% 88.62% 89.51% 7.40% 

7 80.00% 88.57% 88.57% 7.60% 

 
4.4. Experiments on OCDC Dataset 
The OCDC dataset, while relatively small, originally comprises 840 training images and 180 test images. In our 
study, we restructured this dataset to better suit our experimental needs by dividing it into 800 training samples, 
100 validation samples, and 120 test samples. Due to resource constraints, we resized the images from their 
original dimensions of 640x640 pixels to 256x256 pixels, allowing us to efficiently process the data while main-
taining sufficient detail for accurate analysis. We compared the performance of UNet with EfficientNet encoder 
on the original dataset, the stain normalized dataset and data augmented dataset consisting of stain normalized 
images of different reference images. According to our analysis the performance of the model does not change 
significantly if the dataset is stain normalized using any reference images As with the ORCA dataset, we em-
ployed the same data augmentation technique, applying seven different staining colors for stain normalization 
trained with UNet EfficientNet. Fig 4 shows the reference images used for stain normalization. We present the 
results in Table 3 for performance of model to analyse the effect of stain normalization. Similar to the results 
of ORCA dataset the first row where 0 reference images are used are the observations of the non stain nor-
malized dataset. Second row shows the effect of using a single uniform color stain over the dataset. Lastly we 
used stain normalization as a data augmentation technique by using 6 different reference images. 
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Figure 5. The seven different color stains used as reference images to stain normalize ORCA dataset. 
Using seven reference images increased the size of dataset by eight times.\ 

 
Table 3. Observations for the OCDC dataset. 

No. of reference 
images 

Mean IoU Dice Accuracy Error rate 

0 87.00% 93.00% 98.06% 2.00% 

1 86.25% 92.62% 97.80% 2.30% 

6 88.33% 93.80% 98.08% 1.95% 

 

 
Figure 6. Output of UNet EfficientNet on ORCA test samples. 

 

 
Figure 7. Output of UNet EfficientNet on OCDC test samples. 

 
The text continues here (Figure 2 and Table 2). 

  

(a) (b) 
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Figure 8. (a) Training and Validation IOU curve for OCDC dataset; (b) Training and Validation Loss 
curve for OCDC dataset. 

 

  
(a) (b) 

Figure 9. (a) Training and Validation IOU curve for ORCA dataset; (b) Training and Validation Loss 
curve for ORCA dataset. 

 
During the model training with OCDC dataset the training and validation IOU curve and Loss obtained is rep-
resented in Figure 8 (a) and (b) respectively. Also, the training vs validation curve for ORCA dataset, both for 
IOU and Loss is represented in figure 9 (a) and (b) respectively. 
 
5. Conclusions 
In this study, we investigated the impact of Reinhard’s stain normalization on deep learning-based semantic 
segmentation of Oral Squamous Cell Carcinoma (OSCC) histopathological images. Additionally, we proposed 
that stain normalization techniques can serve as a form of data augmentation in whole slide image (WSI) 
segmentation and classification tasks. The model employed for this research is the UNet architecture with 
EfficientNet-B0 as the encoder, chosen for its lightweight design and strong performance. Our results indicate 
that stain normalization did not yield significant improvements in segmentation accuracy on the ORCA dataset. 
However, a slight performance enhancement was observed in the OCDC dataset, where six reference images 
were utilized for data augmentation. 
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