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Abstract 
Background 
Correcting spatial resolution in single photon emission computed tomography (SPECT) using iterative methods has proven 
effective in many studies. This correction involves using a projection matrix (projector) to simulate the acquisition of 
projections by a gamma camera, along with a back-projection matrix (back-projector), which is generally the transpose of 
the projector without any attenuation modeling. This study examined the contribution of distance-dependent detector-
response compensation (DRC) and compared it to the accelerated version and the distance-nondependent method. Two 
projectors (P1 and P2) and their corresponding back-projectors (B1 and B2) were implemented. P1 represented the 
distance-dependent response model, while P2 represented a nondependent average response model. Three reconstruction 
pairs were used: P1/B1 and P1/B2 for distance-dependent DRC, and P2/B2 for distance-nondependent DRC. The 
reconstruction method was the full 3D maximum-likelihood expectation maximization (MLEM), using simulated digital 
phantom projections that included attenuation, distance-dependent resolution, and Poisson noise without considering 
scatter. 
Results 
The assessment used transaxial slices. For full-width at half maximum (FWHM) spatial resolution, P1 outperformed P2. 
P1/B2 outperformed P1/B1, while getting closer after each iteration. Regarding Poisson noise, P1/B1 was more efficient 
than P1/B2 and P2/B2. Edge artifacts and overshoots were less intense with P2/B2 than the other pairs. P1/B2 and P2/B2 
achieved the best relative contrast performance. The root mean squared error (RMSE) or normalized mean error (NME) 
showed that P1/B1 was best for low projection counts and large iteration numbers, while P1/B2 was best for high projection 
counts and low iteration numbers. On RMSE, the reconstruction pair performance depended on projection noise level, 
phantom insert size and type, and iteration. 
Conclusions 
No pair was consistently more efficient than the others across all parameters. Using P1/B1, which is far from convergence 
iteration, could yield results similar to other methods. Considering scatter would likely result in worse and more similar 
results across the three pairs. Although P2/B2 generally performed worse than P1/B2, they were similar and had more 
straightforward implementation. The number of iterations should be chosen according to the reconstruction pair, 
projection count, and desired spatial resolution. 
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Background 
Single photon emission computed tomography (SPECT) images are used for qualitative 
assessments of diseases pre- and postintervention and individualized dosimetry for planning and 
monitoring therapies that use internally applied radionuclides.1-3 Unfortunately, attenuation, 
detector response, and scattering degrade SPECT’s qualitative and quantitative accuracy. The 
collimator-detector system’s limited resolution partly causes the reconstructed images’ poor 
resolution.4 A central limitation of nuclear medicine imaging is its relatively low spatial resolution 
that accentuates the partial volume effects, leading to a notable radioactivity concentration 
underestimation in volumes ~2–3 times less than the spatial resolution of the imaging system.5 
 
In SPECT, the detector response is the convolution product of the gamma camera’s intrinsic and 
collimator’s responses. The latter depends on the distance between the source and the detector.6 
The detector point spread function (PSF) can be expressed by a two-dimensional Gaussian whose 
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full width at half maximum (FWHM) increases linearly with the distance between the gamma 
source and the detector.7 PSF describes the acquisition of primary photons with a parallel hole 
collimator. This distance-dependent resolution in the acquired projections leads to a non-stationary 
blurring of the reconstructed images.8 
 
In nuclear medicine, iterative methods for reconstructing SPECT data are widely used and allow 
qualitative and quantitative improvement of reconstructed transaxial slices by mathematically 
modeling the projection acquisition process. Which allows the correction of the attenuation and 
the detector response. Scattering correction is a more complex problem, and scatter compensation 
methods based on estimating the scatter component in the photo-peak projection—like Jaszczak’s 

dual energy window, triple energy window, or the effective scatter source estimation methods—

are the most popular.9 
 
Two methods have been proposed for detector-response compensation (DRC): analytical methods 
using restoration filtering 10-13 and iterative methods using mathematical modeling of the 
acquisition process.14-18 For iterative methods, a distance-dependent response model is 
incorporated into an iterative reconstruction algorithm. This requires repetition of the convolution 
product between the PSF and the reconstructed slices at each iteration. The slices reconstructed 
using these methods are more accurate but require a longer execution than analytical methods.19 
The resolution improves with each iteration, but the noise level increases. To remedy this, another 
approach has been proposed. It imposes a constant resolution by applying many iterations, 
followed by Gaussian post-reconstruction filtering (PRF). Hutton et al. found that using 
maximum-likelihood expectation maximization (MLEM)20,21 and MCAT phantom, DRC alone 
yielded superior outcomes compared to the combination of PRF and DRC. The results suggest that 
using DRC without PRF and limiting the number of iterations could yield satisfactory results for 
myocardial SPECT.22 
 
Compared to the 2D implementation of the quantitative compensation methods, the 3D 
implementation provides the most accurate SPECT image in terms of quantitative accuracy, spatial 
resolution, and noise; however, this method carries high computational requirements.23 
We used the entirely 3D iterative MLEM technique with these pairings for tomographic 
reconstruction. We assumed that the scattering was completely rectified by the energy windowing 
approaches. The phantoms’ geometry and composition allowed for nearly perfect attenuation 
correction. The projection operator P1 was used to create noise-free projections. P1, therefore, 
represents the ideal projection operator for the distance-dependent DRC. P1/B1 constitutes the 
optimal reconstruction pair. 
 
The parameters utilized in the simulation were derived from those used in nuclear medicine to 
replicate real conditions. Image format: 128x128; pixel size: 4.5 mm; 360◦ SPECT with 120 

projections; radius of rotation: 20 cm; FWHM varied from 7–15 mm for source-detector distance 
(dD) ranging from 10–30 cm;19 and a total count per projection of 2 106, 106, 5 105, 2.5 105, and 
105. These counts cover both clinical and quality control applications.24-26 The chosen 
radionuclide for this simulation ( 𝑇𝑐99𝑚 ) is the most widely used in nuclear medicine. 
We examined the limitations of the optimal compensation method and compared it to its 
accelerated or approximate versions. We used a personal computer (11th Gen Intel(R) Core(TM) i7-
1195G7 2.90GHz) operating Windows 11 Home (Microsoft Corp.) and ImageJ software for image 
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display. 3D phantom generation, projection acquisition simulation, tomographic iterative 
reconstruction, and analyses were performed using an in-house application developed with Delphi 
10.4. Computations were performed with single-precision floating-point arithmetic. 
 
Methods 
This section describes the digital phantom generation, the projection data simulation, resolution 
recovery, and assessment methods. 
 
A. Phantom generation 

The simulated phantoms used in this work comprised a superposition of spheres and cylinders of 
different sizes. Simple phantom shapes (spheres and cylinders) were chosen because of their 
suitability for evaluating SPECT systems, particularly when using automated image data analysis 
processes.25 Based on the parameters specified for the sphere or cylinder, 3D Phantoms were 
generated and integrated on a 128 × 128 × 128 regular Cartesian grid with a resolution of 4.5 mm 
per pixel. Numerical integration was performed using the rectangle method, and each voxel was 
divided into 106 subvoxels. 
 
Three phantoms were used in this study: 

1. The NEMA SPECT Triple Line Source Phantom27 consists of a water-filled cylinder with 
an inside diameter of 202 mm and a height of 200 mm, containing three axial line sources 
with a diameter of 1 mm. 

2. The standard Jaszczak phantom with cold inserts28 consists of a cylinder 186 mm high and 
216 mm in diameter containing six spheres of diameters 12.7, 15.9, 19.1, 25.4, 31.8, and 
38 mm, and 96 rods divided into 6 equal volumes based on their diameters of 6.4, 7.9, 9.5, 
11.1, 12.7, or 19.1 mm (Figure 1). 

3. The standard Jaszczak phantom with hot inserts features a background count per pixel 
equal to 10% of that of the hot insert (Fig.1). 

These digital error-free phantoms consisted of 128 axial slices, represented the object to be imaged, 
and served as standard reference data for assessing the reconstructed slices. 
 

 
 
 
Figure 1: Transaxial Slices from Two Standard Jaszczak Phantoms This image depicts three 
sample images of transaxial slices from two standard Jaszczak phantoms. The phantom on the left 
contains cold inserts, while the one on the right includes hot inserts. The 48th slice is located in 
the uniform part of the phantom, the 57th slice is situated at the level of the plane containing the 
centers of the six phantom spheres, and the 76th transaxial slice is located at the level of the 96 
rods. These 128x128 slices are displayed in 64x64 format, showing only the central part where the 
phantom appears. 
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B. Projection data simulation 

Using a numerical phantom, we simulated 𝑇𝑐99𝑚  projections. The projection data modeled the 
acquisition of attenuated 140 keV photons with a parallel-hole collimator using a 128 × 128 matrix, 
4.5 mm pixel size, 360◦ SPECT with 3◦ steps, and a 20 cm radius of rotation acquisition parameters. 
The simulation included attenuation, distance-dependent resolution, and Poisson noise. The 
Compton scatter effect was disregarded since this study aimed to assess the resolution recovery. 
Knowing the position of the voxel M (xM,yM), the position of its projection M’ (Fig. 2) on the 
detector is given by 

𝑘𝑀′  =  𝑦𝑀 𝑐𝑜𝑠(𝜃) − 𝑥𝑀 𝑠𝑖𝑛(𝜃) 
The three used phantoms were considered to be filled with water, both the containers and the hot 
or cold inserts. To simulate a 𝑇𝑐99𝑚  acquisition, the attenuation coefficient value (µ) for the narrow 
beam of 140 keV was assumed to be 0.15 𝑐𝑚−1. 
Voxel depth in the phantom is necessary to model attenuation. The phantom’s cylindrical shape 
and known position allow for calculating the depth for a projection angle (Figure 2). 
 
 

 
Figure 2: Modeling the Parallel-Projection Acquisition Geometry the k-axis represents the 
detector surface. Oxy: Represents the slice plane; Ok: Represents the detector surface; O: 
Indicates the slice center and cylindrical phantom center; OO’: Denotes the detector radius of 

rotation; θ: Represents the projection angle; M: Represents the slice voxel center; M’: Represents 
the projection of M on the detector; MM’ or dD: Indicates the voxel–detector distance; OI or R: 
Represents the phantom radius; ME: Represents the voxel depth; and O’M’ or kM’: Represents 

the M’ coordinate on the projection line. 
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Let 𝐴 =  𝑥𝑀 𝑡𝑎𝑛2(𝜃) − 𝑦𝑀 𝑡𝑎𝑛(𝜃) 
𝐵 =  √(𝑅2 − 𝑥𝑀2 ) 𝑡𝑎𝑛2(𝜃)  +  2 𝑥𝑀 𝑦𝑀 𝑡𝑎𝑛(𝜃) − 𝑦𝑀

2  +  𝑅2 
𝐶 =  𝑦𝑀 −𝑥𝑀 𝑡𝑎𝑛(𝜃) 
the coordinates of point E(𝑥𝐸 , 𝑦𝐸) are: 

𝑥𝐸  =  {
𝐴 +  𝐵,       − 90𝑜  <  𝜃 <     90𝑜

𝐴 − 𝐵,            90𝑜  <  𝜃 <  270𝑜

   𝑥𝑀 ,       𝜃 =  −90𝑜 𝑜𝑟   90𝑜
   and 

𝑦𝐸  =  

{
 
 

 
 
𝑥𝐸  𝑡𝑎𝑛(𝜃)  +  𝐶,    𝜃 ≠ −90𝑜 𝑎𝑛𝑑 𝜃 ≠ 90𝑜

√𝑅2 − 𝑥𝐸
2  ,                        𝜃 =  90𝑜

−√𝑅2 − 𝑥𝐸
2  ,                        𝜃 =  −90𝑜

 

From which the depth ME is deduced: 
𝑀𝐸 =  √(𝑦𝐸2 − 𝑦𝑀2 )  +  (𝑥𝐸2 − 𝑥𝑀2 ). 
Metz’s theoretical formulation was the foundation for the collimator-detector response model.29 
The collimator-detector’s response function was approximated by a 2D Gaussian function, whose 
FWHM varies linearly with the distance (dD) from the source to the collimator.30 
Clinical SPECT detectors usually provide an intrinsic spatial resolution for 𝑇𝑐99𝑚  in the 3–5 mm 
region. Nevertheless, the source-to-collimator distance and collimator design remarkably impact 
the SPECT system’s image resolution. It generally falls within the 7–15 mm FWHM range for 
parallel-hole collimation of 𝑇𝑐99𝑚  and typical source-to-collimator distances.19 
 
To replicate ideal conditions, the FWHM was varied from 7–15 mm for a distance (dD) ranging 
from 10–30 cm, covering the diameter of the phantom. This yields the simulation equation: 
𝐹𝑊𝐻𝑀(𝑑𝐷)  =  0.04 𝑑𝐷  +  3, where dD and FWHM are expressed in mm. 
The distance voxel detector (Fig. 2) is expressed as dD =  𝑀𝑀′  =  𝑂𝑂′ − 𝑥𝑀 𝑐𝑜𝑠(𝜃) −
𝑦𝑀 𝑠𝑖𝑛(𝜃) 
The point spread function of the system was approximated using a two-dimensional Gaussian 
equation: 

𝐺(𝑘, 𝑙)  =  
4  ln(2)

𝜋  𝐹𝑊𝐻𝑀2
 𝑒
−(

4  ln(2)

𝐹𝑊𝐻𝑀2 ((𝑘−𝑘𝑀′)
2
 + (𝑙−𝑙

𝑀′
)
2
))

 
where 𝑀′(𝑘𝑀′ , 𝑙𝑀′) is the voxel projection on the detector plane. 
Simulations of noise-free and noisy projections were used. Five noisy projection sets were 
processed from each noise-free phantom’s projection sets with total counts per projection of 2 106, 
106, 5 105, 2.5 105, and 105. These counts correspond to an average count/pixel in the Jaszczak 
phantom’s projection area (1986 pixels) of approximately 1000, 500, 250, 125, and 50 (Table 1). 
These counts were chosen to be close to the real conditions and cover clinical and quality control 
applications.24-26 
 
Poisson statistical noise was generated using these rescaled projection values. Suppose N is the 
noise-free projection pixel count. In that case, the noisy value must be an integer random number 
with a Poisson distribution of mean N. If the standard deviation for the Gaussian distribution is set 
equal to √𝑁, the Gaussian and Poisson distributions look very similar once N exceeds ~ 20. N for 
all projections is greater than 20, except for a few pixels on the outer edge of the phantom; 
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therefore, the Gaussian distribution can be used.31 In practice, the Delphi generator of random 
numbers with a Gaussian distribution of mean N and standard deviation √𝑁 was used. 
After generating the five noisy projections, their total count was rescaled to equal that of the non-
noisy projection to facilitate the qualitative and quantitative comparison. 
 
C. Resolution recovery and reconstruction procedure 

This study used two projectors and back-projectors. The attenuation and distance-dependent 
response models were incorporated in the first projector (P1) exactly as described when 
constructing the projections (Paragraph B). P1 perfectly simulates the projections’ acquisition. For 
the second projector (P2), the 2D Gaussian detector response was assumed to be independent of 
the source-detector distance. The average detector response was used with a FWHM of 10 mm. 
The attenuation process was incorporated into P2. P2 simulates an approximation of the 
projections’ acquisition and is more easily implemented than P1. 
 
The first back-projector (B1) is the transpose of P1 without attenuation modeling. The second (B2) 
is the transposition of P2 with a different FWHM of 7 mm and without attenuation modeling. We 
selected the FWHM to reduce the smoothing effect during the reconstruction and to accelerate the 
reconstruction convergence.32 The images were reconstructed using MLEM with P1/B1, P1/B2, 
and P2/B2 as reconstruction pairs (Table 1). 
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Table 1: Procedures for the acquisition simulation and MLEM reconstruction pairs used in this study. 
Projection 
simulation 

P1{ FWHM (mm) 
 

7 to 15 (10–30 cm from detector) 
mu (cm−1) 

 
0.15 

C/pa 
 

NFb 
 

2x106 
 

1x106 
 

0.5x106 
 

0.25x106 
 

0.1x106 
Reconstruc-
tion pair 

Projector 
 

P1 P1 P2 
 

P1 P1 P2 
 

P1 P1 P2 
 

P1 P1 P2 
 

P1 P1 P2 
 

P1 P1 P2 
Back projector 

 
B1 B2 B2 

 
B1 B2 B2 

 
B1 B2 B2 

 
B1 B2 B2 

 
B1 B2 B2 

 
B1 B2 B2 

 
P1: Projector incorporating attenuation correction and distance-dependent DRC. The collimator-detector response function was assumed 
to be a 2D Gaussian function, whose FWHM (7 to 15 mm) is linearly dependent on the source-detector distance. P2: Projector 
incorporating attenuation correction and distance-dependent DRC. The collimator-detector response function was assumed to be a 2D 
Gaussian function, whose FWHM (10 mm) is constant and equal to approximately the mean FWHM of the collimator-detector response. 
B1: Was the transpose of P1 without attenuation correction. B2: The transpose of P2 was done with an FWHM = 7mm and without 
attenuation correction. a: Counts/projection 
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D. Qualitative and quantitative assessment 
To evaluate the qualitative and quantitative accuracy of the reconstruction methods, reconstructed 
transaxial slices of the Jaszczak phantom with cold and hot inserts were used. 
Considering the reduced space occupied by the phantom in the 128 × 128 format slices, they have 
been displayed in a 64 × 64 format, retaining only the central part where the phantom appears. 
Profile curves were used to evaluate the uniformity, noise, and edge artifacts qualitatively. 
The root mean squared error (RMSE) between the reconstructed slices after i iterations (𝑇̂(𝑖)) and 
the standard reference slices (𝑇𝑆) was calculated as 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑇̂(𝑖)(𝑥) − 𝑇𝑠(𝑥))²

𝑁

𝑥 = 1

 

where N is the total number of pixels inside the investigated region of the reconstructed slice. 
The normalized mean error (NME) between the reconstructed slices after i iterations (𝑇̂(𝑖)) and 
the standard reference slices (𝑇𝑆) was calculated as 

𝑁𝑀𝐸 =  
1

𝑁
∑|(𝑇̂(𝑖)(𝑥) − 𝑇𝑠(𝑥))|

𝑁

𝑥 = 1

 

where N is the total number of pixels inside the investigated region of the reconstructed slice. 
Jaszczak phantom spheres were used for the relative contrast (RC) measurement. The RC for each 
sphere was calculated by 

𝑅𝐶 =  

|𝐶𝑆 − 𝐶𝐵|
𝐶𝐵

|𝑆𝑆 − 𝑆𝐵|
𝑆𝐵

 

where 𝐶𝑆 and 𝑆𝑆 represent the sphere mean counts measured respectively on the reconstructed and 
standard reference slices. 𝐶𝐵 and 𝑆𝐵 represent the background mean counts measured respectively 
on the reconstructed and standard reference slices. The mean background counts are calculated in 
a spherical region of interest (ROI) located in the middle of the slices containing all the spheres 
and having the same size as the largest sphere. 
 
The noise level can be assessed by the variance (dispersion of the data from the mean) in the 
uniform part of the phantom. For reconstructed transaxial slices, data can vary from the center to 
the border, even in the uniform part, especially during the first iterations. The variance can be 
higher and not be considered the true noise level representation. In this work, the average local 
variance (ALV) was selected to estimate the noise level.33 ALV was calculated in a circular ROI 
of 13.5 cm (30 pixels) in diameter, drawn at the center of 3 transaxial slices in the uniform part of 
the Jaszczak phantom with cold inserts (from slice 47 to 49). 
Each pixel of coordinates x and y in the ROI was considered the center of a 3 × 3 window. The 
local mean µ𝑥𝑦 for this pixel was calculated as follows: 

µ𝑥𝑦  =  
1

9
∑ ∑ 𝑇̂(𝑖)(𝑥 + 𝑥′, 𝑦 +  𝑦′)

1

𝑦′ = −1

 

1

𝑥′ = −1

 

where 𝑇̂(𝑖) is the reconstructed slice after i iterations and 𝑇̂(𝑖)(𝑥, 𝑦) the pixel of coordinate x and y 
value. 
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The local variance 𝐿𝑉𝑥𝑦 was calculated as 

𝐿𝑉𝑥𝑦  =  
1

9
∑ ∑ (𝑇̂(𝑖)(𝑥 + 𝑥′, 𝑦 +  𝑦′) − µ𝑥𝑦)

2

1

𝑦′ = −1

1

𝑥′ = −1

 

The ROI average local variance was calculated as follows: 

𝐴𝐿𝑉 =  
1

𝑁
∑𝐿𝑉𝑥𝑦
𝑅𝑂𝐼

 

where N is the total number of pixels inside the ROI. 
The FWHM of the line source images in an indicative sum of transaxial slices was used as the 
spatial resolution. To obtain the latter slice, 36 slices (from 46 to 81) reconstructed from the 
resolution phantom were added to minimize noise. An analysis tool that uses the method specified 
by the NEMA standard was developed for the calculations.27 
 

 
Figure 3: Full Width Half Maximum In this figure, we plot the full width at half maximum 
(FWHM) in the central, radial, and tangential directions against the iterative number. The FWHM 
values are obtained from the NEMA SPECT Triple Line Source Phantom. We utilize the MLEM 
reconstruction method with three different resolution compensation techniques. The first column 
depicts the initial iterations, and the second shows all and final iterations. 
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Results 
The FWHM in the central, radial, and tangential directions was measured for all MLEM iterations 
using the NEMA SPECT Triple Line Source Phantom and the method specified by the NEMA 
standard.27 The three resolution compensation methods investigated (Table 1) were compared. The 
results are shown in Fig. 3, which presents FWHM as a function of the iteration. The first, second, 
and third columns represent the first, overall, and last iteration results. At 150 iterations, the central, 
tangential, and radial resolutions reached ~8.5, 8.46, and 4.63 mm with both P1/B1 and P1/B2 
(Table 2). 
 
Table 2: Full Width Half Maximum (FWHM) Analysis   

FWHM (mm)   
Central 

 
Radial 

 
Tangential 

Iteration 25 80 150 
 

25 80 150 
 

25 80 150 

M
et

ho
d 

P1/B1 9.02 8.58 8.50 
 

5.70 4.78 4.63 
 

8.77 8.50 8.46 
P1/B2 8.92 8.57 8.51 

 
5.47 4.76 4.62 

 
8.74 8.50 8.47 

P2/B2 9.17 8.94 8.94 
 

5.79 5.14 5.04 
 

8.83 8.57 8.51 
 
Table 2 presents the Full Width Half Maximum (FWHM) values in the central, radial, and 
tangential directions for iterations 25, 80, and 150. FWHM was determined from the NEMA 
SPECT Triple Line Source Phantom. MLEM reconstruction was employed using the three 
investigated resolution compensation methods. 
 
 

 
Figure 4: Reconstruction of 57th and 76th Transaxial Slices This figure presents the 57th and 
76th reconstructed transaxial slices from the simulated projections, with 1, 0.5, and 0.1 
Mcounts/projection, of the standard Jaszczak phantom with cold inserts. The reconstructions were 
performed using the three investigated resolution compensation methods: P1/B1, P1/B2, and 
P2/B2. These 128x128 slices are displayed in 64x64 format, focusing only on the central part 
where the phantom appears. a: 106 counts/projection 
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Figure 4 shows the 57th and 76th transaxial slices from the standard Jaszczak phantom with cold 
inserts. The 57th slice is located at the level of the plane containing the centers of the six phantom 
spheres. For all methods investigated, visual inspection shows that as iterations advance, contrast 
improves, but noise intensifies. In slices from the noisiest projections (low counts), distinguishing 
the smallest (e.g., 12.7 mm diameter) sphere is difficult. Edge artifacts also increase with iterations 
but are only noticeable in low-noise slices. Oscillation artifacts are also visible. Slices 
reconstructed using the reference method (P1/B1) were less noisy, but the edge artifacts were more 
intense than the other methods, confirmed by the profile curves (Fig. 5). 
 

 
 

Figure 5. Comparison of Vertical Profiles This figure compares the vertical profiles through the 
center of the 57th reconstructed transaxial slices from simulated projections and noise-free data, 
at 1 Mcounts/projection and 0.25 Mcounts/projection, of the standard Jaszczak phantoms with cold 
and hot inserts. The reconstructions were performed using the three investigated resolution 
compensation methods P1/B1, P1/B2, and P2/B2. a: 106 counts/projection. 
 
 
The 76th slice has 96 rods of diameters 6.4, 7.9, 9.5, 11.1, 12.7, and 19.1 mm. Rods that were 6.4 
mm in diameter (lower than the minimum resolution of the detector) are invisible regardless of the 
noise level or reconstruction method used. The spatial resolution of the slices degrades as the noise 
level increases (from top to bottom). Additionally, contrast reduces from the edge to the center of 
the image. A similar observation was reported by Knoll P et al. for advanced iterative 
reconstruction methods.34 

 

 Cuest.fisioter.2025.54(4):7418-7440 7428 



Nuha Altubaynawi1,2, Boubaker 
Zarrad1, Mohammed Aida1 

 

A Detector-Response Compensation Simulation 
Study With 3D MLEM in SPECT Compares 

Distance-Dependent and Distance-Nondependent 
Resolution Methods 

 

  
 
 
 

Figure 6 shows the 57th and 76th transaxial slices from the standard Jaszczak phantom with hot 
inserts. Compared to cold nodules (Fig. 4), the contrast and resolution of hot nodules were 
enhanced. The smallest sphere remains perceptible, and the contrast of the rods is more 
pronounced. Conversely, edge artifacts or overshooting appear on the large spheres, confirmed on 
the profile curves (Fig. 5). 
 
The ALV values from the noise-free simulations are negligible compared to others, which are over 
5000 times higher (Fig. 7, top–left). This indicates that image noise is mainly determined by 
Poisson noise in the simulated projection data, even for the highest counts per projection. The 
curves for P1/B2 and P2/B2 are very similar. Polynomial fits of order 2 for methods P1/B1 and 
P1/B2 show a high correlation with an R2 close to 1, indicating a parabolic trend of the ALV as a 
function of iterations. Using P1/B1 as a reconstruction pair reduced noise amplification compared 
to the other pairs. 
 
Figure 8: Relative Contrast (RC) Analysis In this figure, we analyze the Relative Contrast (RC) 
as a function of the six sphere diameters of the standard Jaszczak phantoms with cold and hot 
inserts. We consider various iteration numbers noise levels and utilize the three investigated 
resolution compensation methods: P1/B1, P1/B2, and P2/B2. a: 106 counts/projection b: Noise-free 
projections 

 
 
 
Figure 8 shows RC as a function of the six standard Jaszczak phantom sphere diameters for various 
iteration numbers, noise levels (3 columns), and the three resolution compensation methods (3 
rows). Figure 8 includes cold and hot spherical inserts. Table 3 reports the RC values of cold and 
hot spherical inserts for various iteration numbers, noise levels, and the three resolution 
compensation methods. Contrast improves with increasing sphere size or iterations and is unrelated 
to noise level. The contrast of hot nodules is greater than that of cold nodules. Curves from no or 
low noise slices (left column) regularly increase, unlike those from noisy slices (right columns), 
which show irregularities accentuating with iterations. The P1/B2 reconstruction pair performs 
best, followed closely by P2/B2 (Table 3). 
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Table 3: Relative Contrast Comparison    
Relative contrast 

Spheres diameter 12.7 mm 
 

38 mm 

Counts/projection 1M 
 

0.1M 
 

1M 
 

0.1M 

Iteration 50 100 150 
 

50 100 150 
 

50 100 150 
 

50 100 150 

M
et

ho
d 

C
ol

d 
in

se
rts

 P1/B1 0.30 0.40 0.46 
 

0.29 0.38 0.43 
 

0.71 0.80 0.83 
 

0.69 0.77 0.81 

P1/B2 0.37 0.49 0.56 
 

0.41 0.55 0.64 
 

0.73 0.81 0.85 
 

0.71 0.78 0.81 

P2/B2 0.36 0.48 0.55 
 

0.41 0.55 0.64 
 

0.73 0.81 0.84 
 

0.71 0.78 0.81 

H
ot

 in
se

rts
 P1/B1 0.47 0.60 0.67 

 
0.43 0.54 0.59 

 
0.94 0.92 0.92 

 
0.94 0.91 0.92 

P1/B2 0.57 0.70 0.77 
 

0.49 0.57 0.59 
 

0.95 0.93 0.93 
 

0.94 0.92 0.93 

P2/B2 0.56 0.69 0.76 
 

0.48 0.56 0.59 
 

0.93 0.91 0.92 
 

0.92 0.91 0.92 

 
Table 3 compares the relative contrast of two standard Jaszczak phantom spheres with cold and 
hot inserts across various iteration numbers and noise levels and the three investigated resolution 
compensation methods. 
 
We calculated RMSE and NME for all reconstructed slices. Due to the similarities between RMSE 
and NME curves (distinguished only by the speed of convergence, which is higher for NME), 
Figure 9 only includes RMSE. The convergence iteration increases with counts per projection. 
Regardless of the noise level, P1/B1 is the slowest, and P1/B2 is the fastest. During the first 
iterations, the RMSE and NME of P1/B2 are lower than those of P1/B1 up to the point where the 
two curves intersect, after which P1/B1 takes over. The iteration corresponding to this intersection 
is reported in Fig. 10 and indicates the regions where methods P1/B1 and P1/B2 perform better 
regarding RMSE or NME. P1/B1 performs best for low counts and large iteration numbers, while 
P1/B2 is best for high counts and low iteration numbers. 
 
Figure 10: Performance Comparison of Methods P1/B1 and P1/B2 This graph illustrates the 
regions where methods P1/B1 and P1/B2 perform better in terms of Root Mean Squared Errors 
(RMSE) or Normalized Mean Errors (NME). Method P1/B1 exhibits superior performance for 
low counts and large iteration numbers, while P1/B2 excels for high counts and low iteration 
numbers. The points represent the intersections of the RMSE (or NME) versus iteration curves of 
P1/B1 and P1/B2 for different counts (refer to Figure 9). Threshold lines are derived from second-
order polynomial fitting. 
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To study the reconstruction method’s behaviors according to the size of the structures imaged, 
regional RMSEs (rRMSE) were calculated in 6 triangular ROIs, each including rods of the same 
diameter (Fig. 11). The results show different behaviors relative to the rods’ diameters and noise 
levels. Curves for regions containing rods whose diameter was smaller than the resolution (6.4 
mm) do not converge (Fig. 11, 1st line); in such cases, rRMSE values are much higher than in 
other regions. These curves occur independent of the projection noise level and reconstruction pair 
used. RRMSE in this region may be mainly due to the detector resolution limit, with noise making 
a negligible contribution. Except for this region, rRMSE decreases with the first iterations. For 
noise-free simulations, convergence is beyond the 200th iteration (the maximum in this work), 
regardless of the reconstruction pair or rods’ diameter (Table 4). For low-noise simulations, 
convergence iteration (when < 200) decreases with the rods’ diameter and increases for high-noise 
simulations (Table 4). The rRMSE convergence iteration is higher than the overall RMSE, except 
for the 7.9 mm rod’s diameter region from the noisiest projections. 
 
Table 4 displays the convergence iteration number and minimal rRMSE between the reconstructed 
axial slices and the calculated true phantom slices (reference) in the six triangular ROIs 
corresponding to the rods’ region of the standard cold Jaszczak phantom. The data is presented for 
noise-free and noisy simulations. MLEM reconstruction was utilized with the three investigated 
resolution compensation methods. 
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Table 4: Convergence Iteration Number and Minimal rRMSE 
Rods diameter 6.4 mm 

 
7.9 mm 

 
9.5 mm 

 
11.1 mm 

 
12.7 mm 

 
19.1 mm 

 
Overall 

Convergence It & rRMSE It. rRMSE 
 

It. rRMSE 
 

It. rRMSE 
 

It. rRMSE 
 

It. rRMSE 
 

It. rRMSE 
 

It. RMSE 

C
ou

nt
s/

pr
oj

ec
tio

n 
an

d 
re

co
ns

tru
ct

io
n 

pa
ir 

Noise 
Free 

P1/B1 1 148 
 

>200 25.6 
 

>200 22.9 
 

>200 19.1 
 

>200 18.3 
 

>200 15.9 
 

>200 2.84 

P1/B2 1 163 
 

>200 23.0 
 

>200 19.4 
 

>200 16.2 
 

>200 16.5 
 

>200 14.6 
 

>200 2.53 

P2/B2 1 131 
 

>200 22.7 
 

>200 19.4 
 

>200 16.6 
 

>200 17.2 
 

>200 15.2 
 

>200 2.72 

2M P1/B1 1 279 
 

>200 26.2 
 

>200 23.3 
 

>200 19.5 
 

>200 19.0 
 

>200 16.4 
 

>200 2.95 

P1/B2 1 177 
 

>200 25.3 
 

>200 21.7 
 

197 19.0 
 

171 19.6 
 

170 17.0 
 

127 2.97 

P2/B2 1 233 
 

>200 25.1 
 

>200 21.9 
 

178 19.4 
 

153 20.1 
 

153 17.5 
 

111 3.12 

1M P1/B1 1 287 
 

>200 26.4 
 

>200 23.5 
 

>200 19.6 
 

>200 19.1 
 

>200 16.8 
 

>200 3.04 

P1/B2 1 189 
 

165 26.7 
 

184 23.6 
 

158 20.1 
 

143 20.2 
 

137 18.1 
 

89 3.20 

P2/B2 1 243 
 

159 26.6 
 

172 23.6 
 

148 20.3 
 

134 20.5 
 

127 18.6 
 

82 3.31 

0.5M P1/B1 1 295 
 

>200 26.5 
 

>200 24.2 
 

>200 21.1 
 

>200 20.5 
 

>200 17.4 
 

150 3.24 

P1/B2 1 201 
 

111 27.7 
 

123 25.6 
 

118 23.2 
 

112 22.8 
 

106 19.8 
 

63 3.45 

P2/B2 1 252 
 

110 27.7 
 

118 25.6 
 

109 23.4 
 

108 23.0 
 

101 20.0 
 

59 3.55 

0,25M P1/B1 1 303 
 

>200 28.1 
 

>200 26.2 
 

>200 23.0 
 

195 21.9 
 

166 19.0 
 

100 3.52 

P1/B2 1 212 
 

58 29.2 
 

80 28.3 
 

73 25.9 
 

82 25.3 
 

82 21.9 
 

44 3.73 

P2/B2 1 262 
 

57 29.2 
 

79 28.2 
 

75 25.9 
 

78 25.4 
 

78 22.1 
 

43 3.80 

0.1M P1/B1 1 310 
 

63 30.3 
 

117 29.1 
 

120 25.8 
 

132 24.6 
 

120 21.5 
 

59 3.89 

P1/B2 1 223 
 

14 30.6 
 

41 30.7 
 

46 28.4 
 

57 28.1 
 

59 25.3 
 

28 4.12 

P2/B2 1 270 
 

15 30.7 
 

41 30.7 
 

45 28.4 
 

55 28.1 
 

58 25.4 
 

27 4.17 
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Discussion 
On average, the spatial resolution improves with iteration (Fig. 3), and, surprisingly, the resolution 
of P1/B2 was approximated or exceeded P1/B1 for the central, radial, and tangential FWHMs and 
the 150 iterations (Table 2). In the digital transaxial slice, the ideal resolution varied from 1–2 
pixels (4.5–9 mm) according to the position of the point source compared to the slice’s pixels. If 
the position is at the center of the pixel, the resolution will be 1 pixel, and if it is at the intersection 
of 2 pixels, the resolution will be equal to 2 pixels. The three used sources were positioned 
according to the specifications of the NEMA SPECT Triple Line Source Phantom. For 
measurement of the central and tangential resolutions, the source was placed between 2 pixels; 
therefore, the ideal resolution should be close to 9 mm. Conversely, for the measurement of the 
radial resolution, the source was placed in the center of the pixel, and therefore, the ideal resolution 
should be very close to 4.5 mm. Taking these considerations into account, the correction of the 
resolution during the iterations becomes obvious. 
 
The results show a parabolic growth of the reconstructed slices’ ALVs (noise level) as a function 
of iterations. The two possible sources of error are Poisson noise and algorithmic noise. Since 
Poisson noise is absent in the noise-free set of simulations, the present noise in the corresponding 
reconstructed slices would be inherent to the algorithmic noise (Fig. 7, top-left). Table 5 
demonstrates that Poisson noise ALV is almost inversely proportional to the total detected counts. 
Similar results were found by Liew et al. using Poisson noise variance.35 
 
Table 5: Average Local Variance (ALV) per Count 
  ALV × (C/p) × 10−6 
Pairs P1/B1  P1/B2  P2/B2 
C/pa 1M 0.5M 0.1M  1M 0.5M 0.1M  1M 0.5M 0.1M 

Ite
ra

tio
n 

50 1.2 1.3 1.1  9.9 9.7 8.8  9.9 9.7 8.8 
100 4.2 4.4 4.0  36.4 35.9 33.6  36.8 36.3 33.9 
150 8.5 8.9 8.2  76.9 76.3 73.5  78.2 77.7 74.4 
200 14 14 14  130 130 128  133 132 130 

 
Table 5 displays the Average Local Variance (ALV) multiplied by the counts per projection, scaled 
by 10−6, for four iterations and three noisy simulations of the three studied reconstruction pairs. It 
demonstrates that ALV is nearly inversely proportional to the total detected counts. a: Counts per 
projection 
 
It is known that MLEM allows for better resolution, a better signal-to-noise ratio, and better 
contrast compared to analytical methods. Nevertheless, MLEM presents two disadvantages that 
the iterations accentuate: noise amplification and edge artifacts. The images become noisier as 
successive estimates are generated with the MLEM algorithm. In addition, an abrupt change in 
intensity near the edges is accentuated and appears in successive estimates with overshoot 
accompanied by ringing, resembling the Gibb phenomenon.36 
 
Edge artifacts generated during image reconstruction are related to the DRC. Strategies for 
managing these artifacts result in resolution deterioration.32,37 
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The edge artifact is only noticeable at high count levels. Otherwise, it would be dominated by the 
noise artifact (Fig. 4). From data of Fig. 5 (noise-free profile after 100 iterations), there were 20%, 
15%, and 11% overshoots observed at the edges of the noise-free standard Jaszczak phantom 
reconstruction using P1/B1, P1/B2, and P2/B2 pairs, respectively These overshoots are less than 
those caused by noise in the same uniform part of the reconstruction of the noisy standard Jaszczak 
phantom. With small regions, this effect can show up as a visible dip at the center (Fig. 5, large 
sphere). Overshoots may occur with sufficiently small hot nodules where the edge artifacts start to 
merge (Figs. 5 and 6). 
 
Figure 6. Reconstruction of 57th and 76th Transaxial Slices This figure presents the 57th and 76th 
reconstructed transaxial slices from simulated projections, with 1, 0.5, and 0.1 Mcounts/projection, 
of the standard Jaszczak phantom with hot inserts. The reconstructions were performed using the 
three investigated resolution compensation methods: P1/B1, P1/B2, and P2/B2. These 128x128 
slices are displayed in 64x64 format, focusing only on the central part where the phantom appears. 
a: 106 counts/projection. 

 
 
 
The curves of P1/B2 and P2/B2 (Fig. 7) are very close to each other and differ from P1/B1. The 
noise level relates more to the back-projector than the projector. 
 
Figure 7: Average Local Variance (ALV) Analysis In this figure, we plot the Average Local 
Variance (ALV) as a function of the iteration number for noise-free and noisy simulations. We 
utilize MLEM reconstruction with the three investigated resolution compensation methods: P1/B1, 
P1/B2, and P2/B2. The ALV is calculated within a circular Region of Interest (ROI) with a 
diameter of 13.5 cm (30 pixels), drawn at the center of three transaxial slices in the uniform part 
of the Jaszczak phantom with cold inserts (see Figure 1), ranging from slices 47 to 49. For the 
methods P1/B1 and P1/B2, a polynomial fitting of order 2 is performed. The resulting R2 values 
are (0.9997, 0.9999), (0.9996, 0.9999), and (0.9998, 1) with 1, 0.5, and 0.1 Mcounts/projection, 
respectively. Trendlines have not been drawn to maintain the curves’ visibility, illustrating the 

noise level’s parabolic growth as a function of the iterations. a: 106 counts/projection. 
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The RMSE measures the deviations between the reconstructed and supposedly ideal slices. RMSEs 
in this study relate mainly to the Poisson noise and the limited spatial resolution of the detector. 
As iterations progress, the spatial resolution improves on one side while the noise intensifies on 
the other. A compromise between the two is reached in the neighborhood of convergence 
(minimum RMSE). Poisson noise varies with counts per pixel, and the errors due to the resolution 
vary according to the size of the nodules in the phantom. Therefore, these deviations and their 
behavior with iterations can change according to the region where they are measured. The overall 
RMSE, as calculated, encompasses all voxels of the phantom. The regional rRMSE was calculated 
considering these variances. The results suggest that any structure with a size lower than the 
minimum resolution of the detector in terms of FWHM cannot be visualized. 
 
Furthermore, this may indicate that in regions containing structures smaller than the resolution, an 
essential component of the rRMSE is caused by this limited resolution. This component can far 
outperform Poisson noise, resulting in rRMSE nonconvergence. This could explain why the 
convergence iteration in the five other regions is higher than the overall RMSE (Table 4). In 
addition to the noise level, the optimal number of iterations also depends on the region to be 
visualized and the size of the structures located there. Thus, the number of iterations should not 
seek an optimal resolution but a reasonable resolution related to the size of the structures sought 
and the level of the projections’ noise. Searching for an optimal resolution will make structures 
larger than the resolution, noisier, and therefore less precise 
 
Figure 9: Root Mean Squared Errors (RMSE) Analysis This figure illustrates the Root Mean 
Squared Errors (RMSE) between the 128 reconstructed axial slices and the 128 calculated true 
phantom slices (reference), plotted as a function of the iteration number for both noise-free and 
noisy simulations. We employ MLEM reconstruction with the three investigated resolution 
compensation methods: P1/B1, P1/B2, and P2/B2. a: 106 counts/projection 
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. 
In Figs. 9 and 11, the curves obtained with P1/B2 decrease fastest and reach convergence earlier. 
Those obtained with P1/B1 have the slowest rate and reach convergence later but with the lowest 
error. The accelerated method results in enhanced numerical noise. This recalls the OSEM method, 
where a compromise between speedup (increasing the number of subsets) and image quality 
degradations (noise, artifacts) was necessary.38 
 

 
 

Figure 11: Regional Root Mean Squared Errors (rRMSE) Analysis This figure depicts the 
Regional Root Mean Squared Errors (rRMSE) between the reconstructed axial slices and the 
calculated true phantom slices (reference) in six triangular Regions of Interest (ROIs) 
corresponding to the rods’ region of the standard Jaszczak phantom. The plot is presented as a 
function of the iteration number for noise-free and noisy simulations. MLEM reconstruction was 
employed using the three investigated resolution compensation methods. a: 106 counts/projection 
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The results confirm the superiority of P1 over P2 except for edge artifacts. They also highlight the 
importance of the back-projector choice. Using a less smoothing back-projector (lower FWHM) 
increases the speed of convergence, decreases edge artifacts, and improves contrast and spatial 
resolution but increases the noise level. At convergence, the RMSE (or NME) is higher. 
This simulation did not include scatter. This represents an ideal situation in which the data had 
accurately compensated for the scatter. Consequently, the reconstructed slices would be 
qualitatively higher and more accurate than those obtained under normal conditions. Nevertheless, 
given that the purpose of this work was to study the DRC, this has no consequences on interpreting 
the results obtained. 
 
The projection operator P1 was used during the simulation of the noise-free projections and in the 
tomographic reconstruction process. As previously mentioned, P1 represents the ideal projection 
operator for the distance-dependent DRC. Under real conditions, several factors may influence the 
projector accuracy, such as the detector response measurement errors, its Gaussian modeling 
approximations, or the linear dependence between the FWHM and source-detector distance. Thus, 
the results would be optimal and may represent the limit DRC can reach. 
 
Even for well-performing reconstruction pairs, stopping iterations far from RMSE convergence 
(which in practice remains to be discovered) could lead to worse results than those obtained by 
less well-performing pairs. Therefore, the three pairs could be used. Although the performances of 
P2/B2 are globally inferior to P1/B2, they remain quite close. Its advantage is the simplicity of its 
implementation compared to the other methods. The number of iterations should be chosen 
according to the reconstruction pair, projection count, and desired spatial resolution. 
 
Conclusions 
None of the pairs investigated were more efficient than the others in terms of RMSE, NME, 
Relative Contrast, noise, or spatial resolution, and this depends on the projections’ noise level, the 
phantom insert’s size and type (cold or hot), and the considered iteration. In general, P1/B1 
constitutes the most efficient reconstruction pair for low counts and large iteration numbers, and 
P1/B2 for high counts and low iteration numbers. P1/B1 appears to be the most effective against 
noise, whereas P1/B2 is the most effective for resolution compensation. Depending on the noise 
level of the projections and the number of iterations, the performance of P2/B2 is lower or very 
close to P1/B2. Its advantage is the simplicity of its implementation compared to the others. 
 
List of Abbreviations 
ALV  Average local variance 
DRC  Detector-response compensation 
MLEM Maximum-likelihood expectation maximization 
NME  Normalized mean error 
PRF  Post-Reconstruction filtering 
PSF  Point spread function 
RC  Relative contrast 
RMSE  Root mean squared error 
ROI  Region of interest 
SPECT Single photon emission computed tomography 
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