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Abstract 
This study investigates the drying kinetics, physical properties, and predictive modelling of pumpkin (Cucurbita 
maxima) powder using both mathematical and artificial neural network (ANN) approaches. Pumpkin, a rich 
source of beta-carotene and antioxidants, holds significant potential as a functional food ingredient. The drying 
process was performed at three temperatures (65°C,70°C,75°C) using a tray dryer to examine its effects on 
moisture content, drying rates, and product quality. The results revealed that higher drying temperatures 
accelerated moisture reduction but also caused nutrient degradation and texture changes. Among the tested 
temperatures, 70°C provided the best balance between efficiency and quality, while 75°C achieved the fastest 
drying rate. Mathematical modelling using five drying models, including the Logarithmic and Diffusion models, 
demonstrated excellent correlation coefficients (R²), indicating their efficacy in predicting drying kinetics. 
However, ANN models outperformed mathematical models, offering superior accuracy with higher R² values 
and lower errors across all parameters. The ANN approach highlighted its versatility and precision in modelling 
complex drying dynamics. Physical property assessments revealed significant changes in colour, density, 
hygroscopicity, solubility, and flowability. The study confirmed that drying temperature significantly affects these 
attributes, with higher temperatures improving solubility and flowability but increasing hygroscopicity and 
promoting colour changes due to browning reactions.  This research emphasizes the importance of optimizing 
drying conditions and leveraging advanced modelling techniques like ANN for efficient production of high-
quality pumpkin powder. These findings provide valuable insights for the food industry to enhance the 
application of pumpkin powder as a functional and nutritional ingredient. 
 
Keywords: Pumpkin powder (PP), Drying kinetics, Artificial Neural Network (ANN), Mathematical modelling, 
Functional food ingredient, Physical properties. 

 
Introduction 
Pumpkin (Cucurbita moschata) is grown in large quantities both in the tropics and temperate climates, rich with 
beta-carotene a precursor of vitamin A and a strong antioxidant. These qualities thus make it an excellent 
candidate for enrichment. Pumpkin fruit is a good subject for the application as a functional ingredient in food 
industry because of its rich nutrition and low cultivation cost. The fruits are pickled after harvesting. On the 
other hand, the pulp pieces of pumpkins are stored for commercial purposes during winter season by the 
producers. Also, they prepare different dishes on it, like stuffed courgettes, fried marrow, and pumpkin with 
syrup and walnuts, which are the traditional flavors of the Turkish kitchen. It was specifically seen that the 
pumpkin producers in the villages wanted to consign the pieces of pumpkins freshly from one season to the 
next and also to export them to the regions where pumpkins do not grow in abundance. Because of this, aside 
from spending a lot more in this process according to the weight of the products, the products may get 
decomposed and could suffer internal or external damages in the exporting process. So, it is prudent to cut 
down on volume and weight to efficiently preserve the pulp pieces of the pumpkin so that they can be 
transferred and/or stashed without much hassle. Therefore, these negative effects should be minimized. The 
best way to accomplish this is by the drying of mammoth pumpkin by hot air. 
Drying is one of the methods of conservation of agricultural products that is widely used and one of the most 
energy-intensive processes of the industry(Liu et al., 2020). It may also be carried out as a thin layer or deep 

mailto:sinthiya1602@gmail.com


`

1 
  3   5     

  
  

 Sinthiya R. et al 

                                    
Optimization Of Drying Kinetics, Physical Properties, And Predictive Modeling of Pumpkin (Cucurbita Maxima) 
Powder: A Comparative Analysis of Mathematical and Ann Approaches 

 

Cuest.fisioter.2025.54(4):5454-5465 5455 

 

layer. The former has also been commonly used in drying agricultural products. Drying materials that are 
completely exposed to air flow through them is called thin-layer drying(Qu et al., 2020). One of the oldest 
methods for the preservation of food is drying, which consists in removing water from the product to provide 
microbiological safety (Reddy et al., 2017), and the most popular drying method includes convection. In this 
method the drying agent supplies heat to the material and removes moisture (in the form of water vapour) from 
the material at the same time. The method itself is low-cost, but it has the disadvantage of entailing a time-
consuming process. During contact with oxygen that is present in the air, the product becomes exposed to high 
temperature for a long time, and such exposure reduces the content of some valuable components which 
readily undergo oxidation at elevated temperature. Another drawback of the convective method is the 
concomitant substantial shrinkage (Dhurve et al., 2021). 
Because of its complexity, heat and mass transfer occur simultaneously in drying. Hence, optimizing the 
conditions for drying is important, and in this regard, mathematical modelling has proven to be an excellent tool 
(Azeez et al., 2019). In addition to this, modelling is used to predict the time taken during drying and the nature 
of general drying. Design and selection of dryers also require a thorough understanding of the drying behaviour. 
Several studies have been reported in the literature to predict or develop the most suitable mathematical model 
for drying kinetics. In general, to predict the drying behaviour of agricultural commodities different mathematical 
models, such as empirical, semiempirical, and theoretical, are used. Most empirical models validate 
exceptional fitting of data but overlook the basics of the drying processes in most drying experiments 
(Balasubramanian et al., 2011). Earlier, modelling of drying kinetics using mathematical models for fruits of 
pumpkin done through hot air drying (Inyang et al., 2018), oven drying (Sarkar et al., 2020), tray, heat pump 
dehumidifier (Karim & Hawlader, 2005) and microwave drying (Liu et al., 2021) has been cited. In addition, 
several studies have been conducted to examine the vacuum drying characteristics of carrot (H. Wang et al., 
2020). The authors, however, could not find any reported literature on the study of drying behaviour for pumpkin 
that involves intelligent process modelling through ANN, mass transfer parameters estimation and calculations 
of drying energy. The purposes of this research were to study the effect of temperatures on the drying 
characteristics of pumpkin fruit as well as to search for the proper thin layer drying models by comparing 
mathematical modelling and Artificial Neural Network that describes its drying behaviour. 
 
Materials and Methods 
Pumpkin Powder Preparation 
Pumpkins (Cucurbita maxima) were purchased from the market of Coimbatore, Tamil Nadu, India. The 
pumpkins were cut into 2 × 5-inch slices, from which seeds were manually removed and soaked in a 2% sodium 
metabisulphite solution for about 1-hour prior drying which will prevent enzymatic reaction and also helped in 
retaining the ascorbic acid and carotene content. The pulp was washed and kept in low-density polyethylene 
(LDPE) airtight bags at −10°C and were subjected to drying treatment within 24 h of storage. Dry matter 
estimation: Initial moisture content was estimated with the help of the hot-air oven method at 105°C for 24 h 
[28]. All readings were replicated thrice for accuracy. In most cases, drying was performed at multi-
temperatures (65°C, 70°C, 75°C) to study the effect of temperature on drying rates. Samples are weighed 
periodically and moisture loss over time is monitored. Moisture content can be calculated for each time interval 
at either wet basis or dry basis. 
 
Determination of moisture content, moisture ratio and drying rate 
The moisture content of pumpkin was measured at different temperatures and methods for using Eqn. (1), and 
the observed data were plotted into a moisture ratio. Equation (2) is used to calculate the moisture ratio; this 
could be reduced by Equation (3) to be frequently relatively small, and its omission never results in significant 
deviations (Xu et al., 2022). 
 

Moisture content [%] =  
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡−𝐹𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
× 100…………….. (1) 

MR =   
𝑀𝑡− 𝑀𝑒

𝑀0− 𝑀𝑒
…………………………………………………………. (2) 

MR =   
𝑀𝑡

𝑀0
……………………………………………………………… (3) 

 
where Mt is the moisture level at a particular point in time, Me represents the moisture content at the point of 
equilibrium, and Mi is the original moisture content. 
 
Drying Kinetics of Cucurbita maxima 
Studies on drying kinetics of Cucurbita maxima focus on dependence of drying kinetics of the material upon 
temperature, relative humidity, and air velocity. (Kalsi, Singh, Alam, & Bhatia, 2023) found that the higher the 
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temperature, the higher is the rate of drying, but too much heat changes the texture and reduces the quality of 
pumpkin tissue. Several model authors have proposed drying laws for Cucurbita maxima, e.g., empirical 
models like the Page model, the Henderson-Pabis model, and the Lewis model, to predict drying and moisture 
loss with time (Loganathan et al., 2024). These models are useful for modelling drying curves, controlling 
processes, and to predict the final moisture content of the process. 
 
Mathematical Modelling of Drying Processes 
Mathematical modelling is considered one of the most important aspects in the prediction and study of the 
kinetic drying of agricultural products. The comparison between different models, such as the Newton, Page, 
and Modified Henderson-Pabis models, showed in table 1 (Ertekin Yaldiz, 2004). Mathematical models can 
predict the rate of moisture removal, and these rates help optimise the drying conditions. In Cucurbita maxima, 
fitting of the experimental data to such models may be utilised in optimising the best drying conditions, thereby 
enhancing quality control and lowering energy consumption (Xu et al., 2022). 
The experimental moisture ratio data was fitted with five different thin layer semi-empirical models summarised 
in Table 1. Empirical constants a, b, c, k' and n were determined by regression analysis using the curve fitting 
tool of MATLAB v.2012 a (Math Works Inc., USA) using the values calculated from Eq. (1).  
 

MR =   
𝑀𝑡− 𝑀𝑒

𝑀0− 𝑀𝑒
…………………………………………………………. (1) 

 

Where, Mt is the moisture content at time t (kg water/kg dry matter), Me is the equilibrium moisture content (kg 
water/kg dry matter), Mi is the initial moisture content (kg water/kg dry matter). The highest coefficient of 
determination (R2) and lowest sum of squared errors (SSE) and mean square error (MSE) values were used 
to select the most suitable equation which expresses the drying kinetics of moringa leaves. 
 

Table 1: Different thin layer drying models 

S.No Model Name Equation References 

1 Page MR = exp(−ktn) (Onwude et al., 2016) 

2 Newton MR = exp(−kt) (Onwude et al., 2016) 

3 Logarithmic MR = a * exp (−kt) + c (Onwude et al., 2016) 

4 Henderson and pabis MR = a * exp (−k t) (Onwude et al., 2016) 

5 Diffusion MR = a * exp(−bt) (Onwude et al., 2016) 

 
Artificial neural network (ANN)  
These are multi-parametric empirical models with parallel and nonlinear interconnectivity. The function of an 
ANN is somewhat like that of a human brain in terms of its adaptability to new information and efficient pattern 
recognition in fuzzy and imprecise data. ANN infrastructure: The ANN infrastructure consists of an input layer, 
one or more hidden layer(s) and an output layer in Figure 1. Each layer is comprised of a set of neurons or 
'nodes'. These nodes have internal connections called 'weights' which decides which of the nodes to trigger 
based on the relative importance of a particular signal. The nodes perform data processing with the help of a 
mathematical transfer function (for example, TANSIGMOID, LOGSIGMOID, PURELIN etc.). ANN learns 
through iterations (epochs) without knowing the relationship beforehand between the variables under 
investigation. It tests each example, one at a time, using the inputs to obtain the solutions that it compares to 
a given pattern. According to the disparity in experimental and predicted values, ANN adjusts the network with 
the applications of alterations to the internal interconnects. This process of trial and error continues until the 
network predictions agree well with the target data within some reasonable degree of accuracy. The trained 
model is subjected to testing and validation and the predicted data is acquired through model simulations. In 
this work, a multi-layer feed forward back propagation model was used. Drying time and temperature were 
provided to the model as input signals. Moisture ratio and moisture content were obtained as model outputs. 
For lower model complexity, the number of HLs was limited to 1 (Tarafdar et al., 2018). 
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FIGURE 1: ANN model for drying. 

Two different transfer functions for the HL were used (TANSIGMOID and LOGSIGMOID) and their relative 
performance was evaluated. PURELIN was applied as the transfer function in the output layer since sigmoidal 
transfer function applied in the output layer may degenerate the network (Dorofki et al., 2012). The training was 
done in MATLAB v.2012a using the Levenberg-Marquardt (LM) and Gradient Descent backpropagation with 
momentum and adaptive learning rate (GDX) as two different training functions. Even though LM is highly 
efficient in pattern recognition due to faster convergence of data, the performance of a training algorithm is 
sensitive to a learning rate; hence, GDX was run separately to identify any shortcomings, if present, while 
running by LM (Tarafdar et al., 2018a). Various combinations of HL, transfer function, and training algorithm 
were tried on the vacuum drying data. Model training was performed by 70% of the data. Testing and validation 
were performed on the remaining 30% of the data set, which was divided equally within both the former and 
the latter. Number of iterations and number of validation checks were restricted to 1000 to reduce processing 
time. Infrastructure ANN with the lowest MSE, the highest correlation coefficient (r), and the lowest complexity 
was chosen. 
 
Impact of Drying on Nutritional and Physical Properties 
Studies show that drying changes the colour and texture of Cucurbita maxima and its nutritional value; high 
temperatures can cause nutrient loss, especially in vitamin C and carotenoids, which are highly sensitive to 
heat (Chauhan et al., 2006). Low air-flow rates may help retain quality in colour and texture but will take longer 
to dry. Therefore, temperature and airflow must be controlled carefully in order to preserve the quality of dried 
Cucurbita maxima. 
 
Water activity, water solubility index (WSI), and hygroscopicity (HG)  
Water Activity (aw) of dried pumpkin powder was determined by using a water activity meter (Pawkit, Decagon 
Devices Inc., USA) at temperature 25.5 ± 1°C. Water solubility index (WSI) was measured following the 
methodology developed by (Luka et al., 2023) with slight changes. It includes the process of adding 0.2 g of 
grind powder with 10 mL of distilled water. The mixture was centrifuged at 3000 rpm for 10 min. The resulting 
supernatant was carefully transferred to a weighed petri dish and dried at 105°C. The Water Solubility Index 
(WSI) could be computed from Equation 2 (Ghnimi et al., 2016). 
 

Solubility Index =  
𝑊𝑡 𝑜𝑓 𝑡ℎ𝑒 supernatant

𝑊𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒
 𝑋 100. . . . . . . . . . . . . . . . . . . . . . (2) 

 
where Ws is eight of the dried supernatant at 105°C, Wos is weight of the original sample.  
Hygroscopicity (HG), the ability of a powder to absorb moisture from a high relative humidity environment, was 
measured for Stevia leaf powders following the procedure by (Zalpouri et al., 2023). In this experiment, 1 g of 
pumpkin powder was placed inside a desiccator, which was maintained at room temperature. After 7 days, the 
powders were weighed, and hygroscopicity was reported as HG (%) or grams of absorbed moisture per 100 g 
of dry solid. Hygroscopicity is calculated using the following equation 3:  
 

Hygroscopicity =  
𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑊𝑡

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
 𝑋 100. . . . . . . . . . . . . . . . . . . . . . (3) 

 
where Δm represents the weight increase of the powder (g), and w denotes the initial weight of the powder (g).  
 
Bulk density and tapped density  
The dried pumpkin powder, prepared by various drying techniques was weighed for bulk and tapped density, 
following the procedure given by (Bakshi & Ananthanarayan, 2022).  To calculate bulk density (Equation 4&5), 
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a known mass of material was poured freely under gravity's influence into a measuring cylinder. The pumpkin 
powder was suspended in a 100 mL measuring cylinder and tapped with the minimum movement until it 
attained its consistent volume, determining the tapped density.   
 

Bulk Density = 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐵𝑢𝑙𝑘 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
…………………………………………… (4) 

Tapped Density = 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝑇𝑎𝑝𝑝𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
………………………………………… (5) 

 
Particle density and bulk porosity  
The liquid displacement method, as described by (Padhi & Dwivedi, 2022) is used to determine the particle 
(true) density of dried Stevia leaf powder. The process involved the measurement of mass of the pumpkin 
powder, and then it was poured into a measuring cylinder filled with toluene. The volume of toluene displaced 
by the powder was measured, and the particle density is determined as per equation 6 below  
 

Particle Density = 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝐷𝑖𝑠𝑝𝑎𝑙𝑐𝑒𝑑
………………………………………… (6) 

 
The porosity (equation 6) of the sample was computed using the difference between the bulk density and true 
density of the powder, according to (Camacho et al., 2022).  
 

Porosity =1 -  
𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝑇𝑎𝑝𝑝𝑒𝑑 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
………………………………………………………… (7) 

 
Flowability indexes  
Angle of repose, cohesiveness and compressibility of pumpkin leaf powders were evaluated in terms of 
flowability indexes by method mentioned in (Camacho et al., 2022). Powders' cohesiveness was appraised 
using Hausner ratio, HR and compressibility was estimated by Carr index, CI. The value of CI and HR were 
calculated from the measurements of bulk and tapped density by applying equations 8 and 9, respectively. To 
determine the angle of repose, a fixed funnel was used to pour powder from a set height onto a level surface, 
and the pile would naturally take on the shape of a cone (Kalsi, Singh, Alam, & Sidhu, 2023).  
 

Hausner Ratio =
𝑇𝑎𝑝𝑝𝑒𝑑 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
… … … … … … … . (8) 

Carr′s Index =
𝑇𝑎𝑝𝑝𝑒𝑑 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 −  𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝑇𝑎𝑝𝑝𝑒𝑑 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
𝑋100 … … … … … … … . (9) 

 
Statistical analysis of ANN 
To check the goodness of fit of the model, several statistical metrics were used such as Average Absolute 
Deviation (AAD), Mean Square Error (MSE), Mean Percentage of Error (MPE), Root Mean Square Error 
(RSME), Coefficient of Determination (R2), and Chi-square error (χ2). The calculations were done using 
equations (10-15). 'n' is the number of experiments, 'Xa' the experimental data, 'Xp' the predicted data, and 
'Xm' mean experimental data. Each experiment was done three times, and the results were reported as mean 
standard deviation, according to the methodology described by (Hunter & Hunter, 1978). 
 

𝐴𝐴𝐷 =  
∑ |𝑋𝑝 − 𝑋𝑎|𝑛

𝑖=1

𝑛
… … … … … … … … … … … … … … (10) 

𝑀𝑆𝐸 =  
∑ (𝑋𝑝 − 𝑋𝑎)

2𝑛
𝑖=1

𝑛
… … … … … … … … … … … … … (11) 

𝑀𝑃𝐸 =  
100

𝑛
∑ |(

𝑋𝑝 − 𝑋𝑎

𝑋𝑝

)|

𝑛

𝑖=1

… … … … … … … … … … . . (12) 

𝑅𝑆𝑀𝐸 =  √∑ (𝑋𝑝 − 𝑋𝑎)
2𝑛

𝑖=1

𝑛
… … … … … … … … … … … (13) 

𝑅2 =  
∑ (𝑋𝑝 − 𝑋𝑎)

2𝑛
𝑖=1

∑ (𝑋𝑝 − 𝑋𝑚)
2𝑛

𝑖=1

… … … … … … … … … … … … … . (14) 
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𝜒2 =  ∑
(𝑋𝑎 − 𝑋𝑝)2

𝑋𝑝

𝑛

𝑖=1

… … … … … … … … … … … … … . (15) 

 
Results and Discussion 
Drying of pumpkin was started at an Initial Moisture Content (IMC) of 92 ± 1.0% on a wet basis in Tray Dryer 
(TD). The key observation reveals that the moisture content transfer was observable at the initial stage of 
drying. The drying moisture ratio curves and microstructures of pumpkin under three different drying 
temperatures are presented in Figure 2. 

 
Figure 2: Moisture Content vs. Time 

 

 
Figure 3: Drying Rate vs. Time 

 
Moisture Content Reduction Over Time 
At all temperatures, the moisture content decreases over time. This is the accepted pattern for drying 
processes. The approach to stabilization at higher temperatures therefore is inevitably gradual but results in 
generally faster reductions in moisture content at higher temperatures 70°C and 75°C compared to 65°C. After 
that the dramatic decline in the moisture content in the initial drying process for 75°C. This would support that 
higher temperature drying increases the moisture elimination rate apparently because water vaporizes better 
at higher temperatures. 
 
Drying Rate 
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At all temperatures, the highest rates of drying occur at the beginning (0–30 minutes) in figure 3. For instance, 
at 75°C, the initial rate of drying is around 0.7%/min, which is significantly higher than at any lower temperature. 
This is probably due to the evaporation of free surface water that is lost more readily at the earlier stages of 
drying. Drying continues to decrease with time. This is observed at both temperatures but is further noticeable 
at 65°C. This slowing down has been recognized to result from the transition from free water removal to bound 
water, which requires energy and even more time to evaporate and subsequently decreases the drying rate 
naturally. 
 
Effect of Temperature on Moisture Content and Drying Efficiency 
Moisture content decreases continuously but at a slower rate at 65°C. After 120 minutes, the moisture content 
reduces to about 50% wet basis, which is relatively slower compared to the other temperatures. This lower rate 
of drying at 65°C can result in longer drying times, which is not efficient. Moderate temperature 70°C, drying 
rate is faster than 65°C. At 120 minutes, the moisture content is reportedly lowered to around 45%, and this 
shows a higher gain in drying efficiency over 65°C. The drying rate approaches equilibrium at roughly above 
0.3%/min towards the end of the process as a balanced drying approach. Drying is apparently very efficient at 
75°C, as the moisture content lowers to about 40% at 120 minutes. The highest initial drying rate is also at 
0.7%/min, which means that the removal of moisture is faster. In this study, higher temperatures may result in 
loss of quality particularly on application when nutrients are degraded or texture changes will occur. Best Drying 
Conditions for the most efficient drying with least energy, 70°C appears to be correct. It is faster than 65°C 
without the risks of nutrient or texture degradation associated with higher temperatures, such as 75°C. In the 
event that fast drying is required and product quality can be managed, then 75°C is the fastest drying time(Rani 
& Tripathy, 2020).  
 
Mathematical Modelling 
The study systematically tested and compared the performances of several mathematical models, among them 
being Newton, Page, Logarithmic, Henderson and Pabis and Diffusion models, on different drying methods 
and temperature levels shown in table 2. Newton Model Provided adequate fit for TD method across the 
temperatures. Satisfactory correlation (R2) and acceptable prediction accuracy (RMSE, SSE). The 
performance of TD Model has been diverse across the temperatures, optimal fit at 75°C. Moderate to good 
correlation with some variation in the accuracy of prediction. Page Model, Logarithmic Model, Diffusion Model 
has Strong fit, Henderson and Pabis Model shows Reasonable fit for TD method across temperatures with 
Excellent correlation and accurate predictions. Logarithmic Model shows consistently high R2 values across 
temperatures. That means the model explains a very high percentage of the variance in the observed data. 
 

Table 2: Mathematical values of different drying process of pumpkin 

Mathematical 
model 

Drying 
Method 

Temp K a b n R2 RMSE SSE Adj R2 

Newton TD 

65 0.057       0.8136 0.1456 0.1495 0.7806 

70 0.091       0.8349 0.1611 0.1421 0.8031 

75 0.116       0.7943 0.1980 0.1358 0.7680 

Page TD 

65 0.0103     3.047 0.9083 0.1046 0.0384 0.8831 

70 0.0120     3.5763 0.9103 0.09105 0.0091 0.8738 

75 0.0908     1.248 0.9403 0.1334 0.0201 0.9135 

Logarithmic TD 

65 0.0043 1.488 2.12 × 10^10   0.9621 0.0495 0.0543 0.9338 

70 0.0072 1.546 3.06 × 10^12   0.9658 0.0555 0.0435 0.9267 

75 0.0097 1.705 5.76 × 10^9   0.9677 0.0705 0.0337 0.9159 

Henderson 
and pabis 

TD 

65 0.004 1.5996     0.8508 0.0606 0.0579 0.8049 

70 1.4037 1.5411     0.8293 0.0641 0.0571 0.7805 

75 1.9865 1.7422     0.8473 0.0833 0.073 0.81 

Diffusion TD 

65 3.514 0.3498     0.947 0.0511 0.0646 0.935 

70 3.4655 0.3532     0.948 0.0666 0.0847 0.9158 

75 3.8675 0.3484     0.9658 0.0912 0.0915 0.9147 

 
All three models the Page, Diffusion, and Logarithmic-tend to work well from the standpoint of the R2 values 
alone for the variability in the drying process data. Choice among these may be driven by criteria like simplicity, 
ease of interpretation, or specific requirements of the application. The best model can be a function of specific 
context and the objectives of your research or application (Calín-Sánchez et al., 2020; Kiremire et al., 2010). 
Based on R2 values alone, the Page, Diffusion, and Logarithmic models all reflect strong performance in 
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explaining the variance within the drying process data. Mathematical modelling was used to fit the experimental 
data using five equations. The statistical results for all models are presented in Table 2. The data obtained 
which were analysed with various kinetic models, in an attempt to identify the greatest precise model for 
pumpkin. The best fit for pumpkin was observed to be from the Logarithmic and diffusion models which obtained 
high R2 values. This result means that both Logarithmic and diffusion models well describe the drying kinetics 
of pumpkin under the experimental conditions applied, with a strong correlation between the predicted and 
actual data.  
 
Performance of ANN 
The training, validation, and testing cycles involving the ANN projections obtained substantially high coefficients 
of correlation (R), exhibiting outcomes in figure 4. Through the application of a different drying process, our 
findings indicate how efficiently an ANN algorithm estimates the kinetics of drying of pumpkin (Chen et al., 
2020; Dash et al., 2020). The most effective ANN model displayed minimal RMSE (0.0042), Chi-square 
(0.00007), and a significant R2 (0.9872). This analysis indicates the ANN model outperformed the mathematical 
models used in the study. The testing, training, and validation stages of the ANN projections exhibited 
significant improvements in the value of the correlation coefficients (R2). The findings collectively emphasize 
the robust predictive capabilities of ANN models in the domain of drying kinetics (Kalsi, Singh, Alam, & Bhatia, 
2023). 
 

 
Figure 4: ANN modelling for Logarithmic and Diffusion Model 

 
The moisture content of pumpkin was observed utilizing this design that showed up to possess a highly precise 
ANN (artificial neural network) all through the dryers. The success of the ANN approach highlights its capability 
to streamline the development of an effective prediction model for the drying process of pumpkin. This 
underscores the efficiency and versatility of artificial neural networks in capturing and modelling the complex 
dynamics of drying kinetics in different drying temperatures (Chasiotis et al., 2020; Yazdani et al., 2013). 
 
Comparison between mathematical, ANN, modelling 
Artificial Neural Network (ANN) approaches develop better projected results of the Moisture 
Percentage variable throughout the drying process of pumpkin, based on the results of an investigation of 
statistics amongst them. The ANN model's displayed MR possesses a greater R2 coefficient than the ideal 
mathematical simulation, which could be displayed in Table 3 and Figure 4. In addition, when compared 
to mathematical and machine learning models, the machine learning model exhibits smaller values across all 
projected variables (chi-square and RMSE). 
 

Table 3: Comparative analysis of mathematical modelling and ANN 

Model 
Drying 
Method 

Mathematical Modelling ANN 

R2 R2 

Logarithmic TD 0.9677 0.9872 

Diffusion TD 0.9658 0.9738 
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A number of studies showed identical findings proving ANN's better predicting capabilities over mathematical 
simulations. Compared to conventional (0.9677, 0.9658) modelling approaches, the method of ANN achieved 
the greatest R2 value (0.9872, 0.9738) in this research. According to (Abbaspour‐Gilandeh et al., 2020; Kaveh 
et al., 2018) an ANN model showed optimum outcomes with a coefficient of variation when it was used for 
estimating ratio of moisture content during the tray drying of almonds seeds. The R2 values of 0.9872, 
0.9738, were displayed for the best models developed employing conventional and neural networks 
approaches. These findings highlight the superior accuracy of ANN over mathematical models in reflecting the 
complex dynamics of the drying kinetics for pumpkin (Karaaslan et al., 2021; Mut et al., 2024). 
 
Colour properties  
Table 4 shows the colour characteristics for pumpkin dried at various temperatures. The convective drying 
significantly (p < .05) reduce the values of L*, b*, hue angle and chroma of pumpkin. The L*, a*, b*, hue angle 
and chroma ranged from 70.70 ± 0.64, 3.15 ± 0.56 and 31.26 ± 1.43 for 65°C, 59.32 ± 0.96, 6.53 ± 0.18, 35.35 
± 0.77 for 70°C and 59.02 ± 0.51, 11.73 ± 0.32, 37.33 ± 0.74 for 75°C respectively. The value of L* decreased 
with increasing temperature from 65 to 75°C. The decrease in the value of L* at higher drying temperatures 
may be associated with non-enzymatic browning and the formation of brown pigment [39]. The convective 
drying of pumpkin at the temperature of 65–75°C increased the value of a*,b*. (Kiremire et al., 2010) also 
reported similar decreasing trend of b* value from 9.54 to 8.12 followed by an increase to the value of 9.39 
when Portulaca oleracea L. leaves were subjected to convective drying and temperature was increased from 
40 to 80°C (Ozcan-Sinir et al., 2018). This devaluation of b* may be due to degradation of carotenoid pigments 
(Ponasenko et al., 2023).  
 

Table 4: Color (L*, a*, b* values) of Pumpkin Powder (PP) 

Temperature(°C) L (Lightness)* a (Redness)* 

65 70.70 ± 0.64a 3.15 ± 0.56 

70 59.32 ± 0.96 6.53 ± 0.18 

75 59.02 ± 0.51 11.73 ± 0.32 

Superscript letters indicate significant differences (p ≤ 0.05) within each column. 
 
Water activity, water solubility index, and hygroscopicity  
Water activity (aw) of dried sample was reported in Table 6. As the temperature of the drying air increased from 
65 to 75°C, the aw value of the dried pumpkin decreased effectively from 0.64 to 0.30, which is a decline of 
51.45%. Therefore, the water activity (aw) values of pumpkin powder obtained through convective drying were 
found to be below the safe storage level. The values of aw decreased with the rise in drying temperature due 
to increased water vapor migration with greater temperatures (Sultanova et al., 2024). Water solubility index 
(WSI) is an important physical property used to assess the ability of a powder to dissolve in water and release-
soluble components, resulting in the formation of a homogeneous and stable solution. As demonstrated in 
Table 5, the WSI values of pumpkin powders varied from 40.10 ± 0.35 to 52.20 ± 0.30%. The increase in 
solubility with an increase in temperature probably results from simultaneous increases in porosity and 
uniformity of pores in the dried samples(Akter et al., 2022).  
 

Table 5: Water activity, water solubility index, and hygroscopicity of Pumpkin Powder (PP) 

Drying Temperature 
(°C) 

Water Activity 
(aw) 

Water Solubility Index (WSI, 
%) 

Hygroscopicity (HG, 
%) 

65 0.64 40.10 ± 0.35 5.24 ± 0.12 

70 0.43 46.61± 0.24 6.31 ± 0.20 

75 0.30 52.20 ± 0.30 7.98 ± 0.16 

 
Hygroscopicity (HG) of hot air-dried pumpkin is presented in Table 6. The hygroscopicity of dried pumpkin 
powders was found to vary between 5.24 ± 0.12 and 7.98 ± 0.16%, based on the drying temperature used. In 
increasing order, the powders' hygroscopicity was 65°C < 70°C < 75°C. The increase in temperature results in 
an increase in hygroscopicity of dried pumpkin powder. Hygroscopicity of powders was found to decline with 
increase in temperature. (Karlović et al., 2023) reported that if the air temperature is increased from 70° to 
90°C, the hygroscopicity of dried Agave rhodacantha Trel leaf powders increased. 
 
Density (bulk, tapped, and particle) density, and bulk porosity  
Table 6 shows the measurements of the dried pumpkin powder's bulk and tapped density. No significant (p > 
.05) change in bulk density of dried sample takes place when temperature was raised. It also shows that the 
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bulk density of the sample is not varying with a change in temperature; Aprajeeta et al. also prove this (T. Wang 
et al., 2021). It is noted that the bulk and tapped density of dried pumpkin powder are within the range of 0.241–
0.250 g/cm3 and 0.270–0.284 g/cm3, respectively. There was a declining trend for the values of both bulk (5.2 
% decreases) and tapped (14.25% decrease) density as temperature of drying increased from 30 to 80°C. The 
reduction in density of the dried powder is due to the increased rate of evaporation of moisture at higher 
temperatures during drying.(T. Wang et al., 2021) The effect of the convective drying temperature was found 
significant (p < 0.05) on the particle density of the powder. With an increase in drying temperature, the particle 
density of the powder was also found to raise as can be seen in Table 6. The particle density ranges between 
1.01 and 1.52 g/cm3. The porosity in porous media plays a leading role in changing the density due to variables 
like porosity and nature of shrinkage pattern. In present study, the increase in bulk density of pumpkin dried 
powder may be attributed to the densification of solid components like carbohydrates when water is 
evaporated.[57] This could be due the fact that porosity is inversely proportional to bulk density. Furthermore, 
the porosity of sample increases with the rise in the pores containing water being replaced by air (Sahoo et al., 
2022). (Küçük et al., 2022)] reported that increasing the air temperature from 40 to 120°C during drying of 
blanched Carica papaya particle porosity of dried powders showed a variation between 0.536 and 0.621. 

Table 6: Density (bulk, tapped, and particle) density, and bulk porosity of Pumpkin Powder (PP) 
Flowability indexes 

Drying Temperature 
(°C) 

Bulk Density 
(g/cm³) 

Tapped Density 
(g/cm³) 

Particle Density 
(g/cm³) 

65 ~0.241  ~0.270  ~1.01 

70 ~0.245 ~0.278 ~1.19 

75 ~0.250 ~0.284 ~1.52 

 
Table 7 displays the drying temperature effect on the Carr index, Hausner ratio, and angle of repose of the 
powder. It was observed that with the increased drying temperature, Carr index and Hausner ratio decreased. 
The compressibility of a material is classified as follows based on the Carr index (CI) values: very good when 
CI is less than 15%, good when CI is between 15% and 20%, fair when CI is between 20% and 35%, bad when 
CI is between 35% and 45%, and very bad when CI is greater than 45%, while a low cohesiveness is indicated 
when HR is less than 1.2, an intermediate cohesiveness falls within the range of 1.2 to 1.4, and a high 
cohesiveness is observed when HR exceeds 1.4. Powders with a repose angle up to 35º are classified as free-
flowing. A repose angle between 35º and 45º is said to be roughly cohesive in nature. If the repose angle falls 
between 45º and 55º, the powder is termed cohesive, while a repose angle greater than 55º indicates a very 
cohesive nature. [61,62] In the present study, as the air temperature increased from 65 to 75°C, the values of 
CI, HR, and α varied between 6.20 to 12.75%, 1.354 to 1.671, and 24.27 to 31.43, respectively(Mut et al., 
2024). Thus, CI, HR, and α values showed decrements with an increase in drying temperature. From 
experimental data, it is evident that powder of dried pumpkin possesses excellent flowability characteristics. 
The research also revealed that flow ability of the substance improves as the drying temperature increases. 
 

Table 7: Density (bulk, tapped, and particle) density, and bulk porosity of Pumpkin Powder (PP) 

Drying Temperature 
(°C) 

Carr Index 
(CI, %) 

Hausner Ratio 
(HR) 

Angle of Repose 
(α, °) 

Flowability 
Classification 

65 12.75 1.671 31.43 Free-flowing 

70 9.51 1.403 27.36 Free-flowing 

75 6.20 1.354 24.27 Free-flowing 

 
Conclusion 
The study extensively investigated the drying kinetics, physical properties, and predictive modelling of pumpkin 
(Cucurbita maxima) powder using mathematical and artificial neural network (ANN) approaches. It highlighted 
the effectiveness of different drying temperatures on moisture reduction, drying rates, and the overall quality of 
the dried product. Among the tested drying methods, 70°C emerged as the optimal temperature for balancing 
efficiency and product quality, while 75°C offered the fastest drying rate at the cost of some nutrient and texture 
degradation. The comparative analysis of mathematical models revealed that the Logarithmic and Diffusion 
models provided the best fit for predicting drying kinetics, demonstrating strong correlation coefficients (R²). 
However, ANN models outperformed traditional mathematical models in prediction accuracy and reliability, 
achieving higher R² values and lower errors across all parameters. This underscores the potential of ANN as 
a robust tool for modelling complex drying processes. The study also found significant effects of drying 
temperature on the physical properties of pumpkin powder, such as colour, density, water solubility, 
hygroscopicity, and flowability. Higher drying temperatures improved solubility and flowability but led to 
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increased hygroscopicity and slight changes in colour due to non-enzymatic browning. Overall, the results 
highlight the importance of selecting appropriate drying conditions and predictive models for optimizing the 
drying process of pumpkin powder. This research contributes valuable perceptions for the food industry, 
supporting the efficient production of high-quality, nutrient-rich pumpkin powders for various applications. 
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