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Introduction 

Nanoparticles (NPs) are widely utilized in various industries, including electronics, agriculture, 

textile production, and medicine. The International Organization for Standardization defines 

NPs as structures with dimensions ranging from 1 to 100 nm in one, two, or three dimensions 

(1). NPs can be classified based on their physical parameters (e.g., electrical charge), chemical 

characteristics (e.g., core or shell composition), shape (e.g., tubes, films, rods), and origin 

(natural NPs like volcanic dust and viral particles, or artificial NPs, which are the focus of this 

review) (2). The primary concern limiting the use of NPs in disease treatment and diagnosis is 

their toxicity to living organisms (3). Researchers often encounter challenges and side effects 
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related to NP toxicity, making the choice of appropriate experimental models for in vitro (cell 

lines) and in vivo (experimental animals) toxicity assessment crucial (4). NPs can enter the 

body through inhalation, dermal contact, and ingestion, depending on their physicochemical 

properties and production methods (5). The interaction of NPs with the body can occur via 

respiratory, digestive, dermal, or blood pathways (6). Some NPs, such as ZnO and TiO2, are 

used in health products for their UV-blocking properties, raising concerns about their health, 

safety, and environmental risks due to environmental dispersion (7).  

Studies have shown that NPs can enter the human body through various routes, reach vital 

organs via the bloodstream, and cause tissue and cell damage (8). Although the exact 

mechanisms of NP toxicity are not fully understood, factors such as particle shape, size, 

dispersity, surface charge, and protein corona effects are believed to play significant roles (9). 

Research indicates that NPs can induce oxidative stress and activate genes involved in 

inflammation (10). NPs can accumulate in different tissues and organs, and some can even 

cross the blood-brain barrier (BBB) by interacting with CXCR6 chemokine receptors. The 

passage, performance, and metabolism of NPs within cells are still under investigation. 

This review aims to elucidate whether NPs have destructive and toxic effects on organs or if 

they are safe for use. The development of safe, biocompatible NPs for diagnosing and treating 

human diseases requires a comprehensive understanding of the interactions and mechanisms 

underlying NP toxicity. 
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Figure 1: Nanotechnology and their application in various areas for combating issues 

Nanoparticles Applications of Medical Sciences 

Nanoparticles (NPs) are extensively used in medicine for both diagnostic and therapeutic 

purposes. In diagnostics, NPs serve as fluorescent labels for detecting biomolecules and 

pathogens, and as contrast agents in magnetic resonance imaging (MRI) and other imaging 

techniques (11). Additionally, NPs are employed for targeted drug delivery, including the 

delivery of protein and polynucleotide substances, photodynamic therapy, thermal ablation of 

tumors, and prosthetic repair (12). Various types of NPs, particularly gold and silver 

nanometals, have been widely used in drug delivery, disease diagnosis, and as biological 

sensors (13). These particles can be synthesized in different sizes and shapes with a narrow 

size distribution. A unique feature of NPs is their optical behavior, which changes with particle 

size, allowing NPs of different sizes to exhibit different colors at visible wavelengths (14). This 

property is useful for disease diagnosis and drug delivery.  

The surface of NPs can be easily modified to bind various ligands such as sugars, peptides, 

proteins, and DNA (15). Iron oxide superparamagnetic NPs are a significant category of 
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inorganic materials used in drug delivery, prepared through chemical methods like co-

precipitation or biological means using bacteria (16). These NPs can be surface-modified for 

direct ligand bonding, and their superparamagnetic properties enable targeted drug delivery via 

an external magnetic field (17). For instance, Fe3O4 (magnetite), γ-Fe2O3 (maghemite), and 

superparamagnetic iron oxide NPs (SPIONs) are commonly used in drug delivery, often coated 

with polymers such as dextran or chitosan to enhance biocompatibility (18).  

Recent advancements emphasize the use of carbon nanotubes and fullerenes (Buckyballs) in 

drug delivery due to their size, shape, and surface properties (19). Single-wall carbon nanotubes 

and C60 fullerenes, with diameters around 1 nanometer, can easily pass through biological 

membranes and barriers, penetrating cells. These structures allow for surface engineering, 

enhancing solubility and biocompatibility, and facilitating the delivery of biological molecules 

such as proteins, DNA, and drugs. Pharmaceutical compounds can be loaded onto or inside 

these structures, enabling targeted and simultaneous delivery of multiple compounds. 

The term "liposome" was coined in 1961 by Alec D. Bangham. These double-layer vesicles 

consist of an aqueous core enclosed within a lipid bilayer, typically composed of natural or 

synthetic phospholipids (20). The amphiphilic nature, biocompatibility, and ease of surface 

modification make liposomes a valuable option for drug delivery (21). Another example of 

lipid nanostructures is solid lipid nanoparticles (SLNs), which form a solid lipid matrix 

composed of triglycerides, lipids, fatty acids, steroids, and waxes, with sizes typically less than 

1 µm (22). To enhance the stability of these particles, surfactants are often included in their 

formulation (23). SLNs can encapsulate drugs with low aqueous solubility, allowing for 

controlled release and targeted delivery via oral or injectable routes (24). 

Polymer nanoparticles (PNPs), both natural and synthetic, are also widely used in drug 

delivery. These materials must be biocompatible, non-toxic, and free from leachable impurities, 

with appropriate physical structures and desired half-lives (25). Biodegradable polymers are 

often preferred due to their high stability and scalability (26). PNPs can form vesicular systems 

(nanocapsules) or matrix systems (nanospheres), where the drug is either encapsulated within 

a polymeric cavity or dispersed in a polymer matrix (27). Polymer micelles, self-assemblies of 

block copolymers, have a core-shell structure and exhibit properties such as low critical 

micellization concentration (CMC), which enhances drug solubility and stability (28). These 

structures offer greater mechanical and biological stability compared to liposomes, reducing 

macrophage interaction and providing better drug protection (29). 
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Hydrogel nanoparticles are three-dimensional polymer networks used to encapsulate and 

deliver drugs. These hydrogels swell in water or biological environments, carrying large 

amounts of fluids (30). Stimulus-responsive hydrogels can release drugs in response to specific 

environmental changes, such as temperature and pH (31). These systems have applications in 

delivering DNA and proteins, wound healing, biosensing, and tissue engineering. 

Nanoparticle Toxicity and their Mechanisms 

The surface properties of nanoparticles (NPs), such as hydrophobicity and hydrophilicity, 

significantly influence their biological interactions, including plasma protein binding, cellular 

uptake, phagocytosis, immune system stimulation, and particle removal (32). These properties 

result in varied cellular responses, such as adhesion, growth, and differentiation (33). NPs 

induce oxidative stress through physicochemical interactions with the cell membrane, 

generating ions that cause toxicity, which can be exploited to target cancer cells (34). Larger 

NPs have increased interactions with the cell membrane, leading to higher cellular toxicity 

(35). The cell membrane, composed of proteins and extracellular polymeric materials, is 

complex and dynamic (36). NPs penetrate cells through diffusion, endocytosis, and interactions 

with membrane proteins such as the phospholipid layer (37). Once inside, NPs are localized in 

endosomes and the nucleus, degraded in lysosomes, or recycled back to the plasma membrane 

(38). The toxicity of gold nanoparticles (Au NPs) with diameters under 100 nm has been 

studied, revealing that both the smallest and largest sizes (3, 5, 50, and 100 nm) induce toxicity, 

including apoptosis, oxidative stress, organelle and DNA damage, and mutagenesis (39). NPs 

primarily enter cells through endocytosis, with their toxicity largely attributed to the increase 

in reactive oxygen species (ROS) they generate (40). 

Reactive Oxygen Species Levels in the Cell  

Nanoparticles (NPs) can increase inflammatory factors such as TNF-α, IL-8, IL-6, and IL-1, 

ultimately causing mitochondrial damage (41). The interaction of NPs with cell surface ligands 

and membrane receptors is a primary route for drug delivery, typically implemented through 

endocytosis (42). Recently, amphipathic gold nanoparticles (Au NPs) have been used to reduce 

toxicity in drug delivery. Their hydrophobic nature protects them against microbial attacks, 

swelling, and pH-induced pore changes, allowing them to pass through membranes without 

damage (43). This behavior is reminiscent of cyclic citrullinated peptide (CCP) used in 

rheumatoid arthritis therapy (44). The α-helix protein, with its hydrophilic and hydrophobic 

parts, binds to cationic groups, enters the cell, and interacts with the negatively charged 
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membrane (45). Factors crucial for NP interaction with cell surface proteins include surface 

charge and hydrophobicity, with cationic interactions being stronger than anionic ones (46). 

The hydrophobic properties of NPs facilitate drug delivery for medications that are otherwise 

difficult to transfer (47). Coating NPs with ligands affects their size, ligand density, receptor 

emission, and free energy changes (48). Rod and cylindrical NPs require more time for cellular 

wrapping compared to spherical NPs due to the thermodynamic forces involved in engulfment 

(49).  

The interaction of NPs with macromolecules such as proteins can lead to structural changes in 

the proteins, affecting their function (50). NPs like C60 fullerenes and single-walled carbon 

nanotubes (SWCNTs) are used to inhibit enzymes such as HIV-1 protease and S-DNA-

glutathione for therapeutic purposes (51). However, these features can also contribute to NP 

toxicity, primarily through oxidative stress, which disrupts intracellular harmony and increases 

reactive oxygen species (ROS) (52). DNA strand damage, such as hydroxy deoxyguanosine 

formation, can occur if DNA repair mechanisms fail, leading to cancer progression (53). 

Oxidative stress activates various signaling pathways that may result in cell death (54). 

The most common mechanisms of NP cytotoxicity entail the following : 

1. NPs may cause oxidation via increase of reactive oxygen species (ROS) 

2. NPs may damage cell membranes by perforating them 

3. NPs damage components of the cytoskeleton, disturbing intracellular transport and cell 

division 

4. NPs disturb transcription and damage DNA, thus accelerating mutagenesis 

5. NPs damage mitochondria and disturb their metabolism, which leads to cell energy 

imbalance 

6. NPs interfere with the formation of lysosomes, thereby hampering autophagy and 

degradation of macromolecules and triggering the apoptosis 

7. NPs cause structural changes in membrane proteins and disturb the transport of substances 

into and out of cells, including intercellular transport 

8. NPs activate the synthesis of inflammatory mediators by disturbing the normal mechanisms 

of cell metabolism, as well as tissue and organ metabolism The penetration of NPs can occur 
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through diffusion, endocytosis and membrane receptor proteins. NPs are then localized in late 

endosomes, mitochondria, endoplasmic reticulum (ER) or nucleus, then induce signaling 

pathways that are mostly depended on ROS. Mitochondrial ROS can lead to accumulation of 

more levels of ROS and resultant oxidative stress may disrupt protein folding process, causing 

ER stress and induce DNA damage, leading to activation of cell death pathways. Although 

some NPs, such as Ag NPs, are used as an antimicrobial agent because of this mechanism, 

inappropriate use of these NPs can damage other cells instead of microbes. For example, Ag 

NPs can be used to disinfect wounds and prevent the growth of bacteria in that area. They can 

prevent bacterial growth and replication through the above mechanisms and heal the wound. 

But, it should be noted that the same NPs can also affect the cells of human body around the 

injury site and cause cell death. 

 

Figure 2: Nanoparticles and their interaction with cellular functions to enhance the 

antioxidants to inhibit the ROS level. 

The Effect of NP on the Protein Conformational Changes 
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A variety of techniques, including nuclear magnetic resonance (NMR) spectroscopy, X-ray 

crystallography, circular dichroism spectroscopy, isothermal titration calorimetry, differential 

scanning calorimetry, fluorescence spectroscopy, and UV-visible spectroscopy, have been 

widely used to analyze protein-nanoparticle (NP) interactions (55). NP-induced conformational 

changes and subsequent protein corona formation depend on several factors, such as protein 

type, NP type, NP size, shape, pH, and temperature (53).  

Subtle changes in NP structure affect their surface properties and subsequent interactions with 

proteins (56). The interaction of single-wall carbon nanotubes (SWCNTs) and multi-wall 

carbon nanotubes (MWCNTs) of varying diameters with tau protein has been investigated 

using various methods (57). Circular dichroism spectroscopy revealed that increasing 

concentrations of SW63CNTs led to a significant increase in β-sheet content in tau protein, 

indicating that SWCNT binding causes tau protein to fold into a more compact structure (58). 

In contrast, MWCNT binding did not alter the secondary structure of tau protein but resulted 

in protein aggregation (59). Transmission electron microscopy (TEM) showed that tau protein 

can bind to the surface of SWCNTs, dispersing them, whereas tau protein cannot attach to the 

MWCNT surface, leading to MWCNT agglomeration (60).  

Surface functionalization of NPs also influences protein adsorption and subsequent NP-

induced conformational changes (61). Protein surface residues interact with energetically 

favorable counterparts on the NP surface based on charge, hydrophobicity, and hydrophilicity 

(62). Thermodynamic parameters, such as standard enthalpy change (ΔH°), standard entropy 

change (ΔS°), and standard Gibbs free energy change (ΔG°), can indicate the nature of NP-

protein interactions (63). When ΔH° and ΔS° are negative, hydrogen bonds and van der Waals 

interactions are the main forces between NPs and proteins. If ΔH° is nearly zero and ΔS° is 

positive, electrostatic interactions are predominant (64). 

Effect of Protein Corona on the Toxicity of NPs 

Upon injection of nanoparticles (NPs) into the bloodstream, various biological molecules 

compete to interact with the NP surface, a phenomenon known as the Vroman effect. Initially, 

the smallest and most abundant proteins adsorb onto the NP surface. However, over time, these 

proteins are replaced by those with higher affinity (65). The structure and composition of the 

protein corona depend on the physicochemical properties of the NPs, the physiological 

environment, and the duration of exposure (66). The protein corona alters the size and surface 

composition of nanomaterials, providing them with a new biological identity. This new identity 
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influences physiological responses, including aggregation, cellular uptake, half-life in the 

bloodstream, signaling, synthesis, transfer, accumulation, and toxicity (67). The protein corona 

is complex, with no universal composition specific to all NPs. Common proteins found in the 

corona include albumin, immunoglobulin G (IgG), fibrinogen, and apolipoproteins. These 

proteins, prevalent in blood plasma, may be replaced over time by proteins with lower 

concentrations but higher affinities for the NP surface.  

Proteins weakly attached to the NP form a "soft corona," while NPs with pre-formed agent 

groups, such as polyethylene glycolated (PEGylated) NPs, typically have only a weak covering 

corona and no "hard corona". The presence of a protein corona can reduce the toxicity of NPs 

by decreasing their cellular uptake. Consequently, NPs with a less developed protein corona 

exhibit higher cellular uptake and increased cytotoxicity. This phenomenon has been observed 

in various cell environments for carbon nanotubes (CNTs), graphene oxide nanosheets, and 

biopolymer NPs. For commonly toxic nanomaterials, such as positively charged polystyrene 

NPs, the protein corona plays a protective role against membrane damage. 

Effect of Protein Corona on Non-specific Cellular Uptake 

The specific entry of nanoparticles (NPs) into cells is facilitated by receptor-specific ligands. 

Non-specific cellular uptake, on the other hand, is a random process performed without 

biomolecular control. The extent of NP entry into cells is influenced by the protein corona. 

Studies have shown that the non-specific cellular uptake of oligonucleotide-mediated gold 

nanoparticles (AuNPs) significantly increases in environments devoid of serum proteins (68). 

Similarly, the cellular absorption of iron-platinum (FePt) NPs with quantum dots (QDs) is 

dramatically reduced in HeLa cells due to the formation of a protein corona (69).  

Effect of Protein Corona on Bio-distribution of NPs 

The nature of the nanoparticle (NP) core, whether non-polymeric or polymeric, significantly 

influences its persistence in the bloodstream and clearance rate. Pre-coating NPs with specific 

agents, such as bovine serum albumin (BSA), has been shown to increase their persistence in 

the blood and reduce the clearance rate. For instance, a study revealed that BSA-coated 

nanodrugs had a lifespan six times longer than their non-coated counterparts (70). 

Effect of Surface Charge of NPs on their Toxicity 

Nanoparticle (NP) hydrophobicity and surface charge significantly influence their biological 

distribution due to their interactions with the immune system, plasma proteins, extracellular 
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matrix, and non-target cells. Hydrophobic or charged NPs are less persistent in circulation 

because they are more readily opsonized by plasma proteins and subsequently cleared by the 

reticuloendothelial system (RES) (71). Positively charged NPs non-specifically attach to 

negatively charged non-target cells, while hydrophobic groups on the NP surface promote 

aggregation, accelerating identification and clearance by the RES (72). 

To mitigate these interactions, NPs are often coated with hydrophilic polyethylene glycol 

(PEG). This coating reduces opsonization levels, thereby increasing the persistence of NPs in 

circulation (73). PEGylation creates a "stealth" effect, minimizing recognition and clearance 

by the immune system (74).  

Effects of Physicochemical Properties of NPs on Cytotoxicity 

A unique property of nanomaterials is their high surface-to-volume ratio, which endows them 

with useful characteristics. However, this trait is also associated with unique mechanisms of 

toxicity. Toxicity is generally thought to originate from nanomaterials' size, surface area, 

composition, shape, and other factors (75). The surface charge of nanoparticles (NPs) affects 

biological aspects such as absorption, colloidal behavior, plasma protein binding, and passage 

through the blood-brain barrier (76). Negatively charged NPs exhibit higher cellular absorption 

than positive and neutral NPs due to resistance by plasma proteins, which causes hemolysis, 

platelet aggregation, and eventually toxicity (77). 

The surface of NPs influences the absorption levels of ions and biomolecules, potentially 

altering cellular responses (78). Additionally, surface charge determines colloidal behavior, 

which affects how organisms respond to changes in NP shape and size, leading to cellular 

accumulation (79). The effect of NP surface chemistry on human immune cells and red blood 

cells (RBCs) has been investigated in both in vivo and in vitro models (80). For instance, the 

effect of silicon surface charge on cell lines showed reduced ATP levels and genotoxicity for 

negatively charged hydrophilic and hydrophobic surfaces compared to positively charged 

amine-modified surfaces (81). 

The interaction between NPs and cells initially depends on the nature of the NP surface. 

Incubation of NPs with cells may interfere with cell adhesion, affecting cellular properties such 

as morphology, cytoskeleton, proliferation, and survival (82). It is worth noting that the surface 

of NPs and the groups on their surface significantly impact adhesion. For example, bare iron 

oxide NPs with an approximate diameter of 50 nm exhibit 64% less cell adhesion compared to 
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polyethylene glycol (PEG)-coated ones (83). This difference can be attributed to the varying 

interactions between NPs and cells with different charges in the presence or absence of surface-

coating agents (84). 

In Vivo Study of Nanoparticle Toxicity 

In addition to numerous studies on the behavior of nanoparticles (NPs) in in vivo models, their 

biomedical applications and toxicity for living organisms remain important topics. Although 

NPs are highly promising for various medical applications, they can potentially cause side 

effects. These side effects cannot be precisely estimated in vitro, as comparisons between in 

vivo and in vitro effects of NPs often show differences. 

Metal oxide NPs, such as titanium dioxide (TiO2), are among the most widely used, 

particularly in environmental protection measures. Therefore, it is important to evaluate their 

toxicity and bioavailability through experiments involving their injection into experimental 

animals. In a study by Kiss et al. (2016), experimental animals (rats) were injected with a 

suspension of TiO2 NPs at a dose of 15 µg/cm². The biodistribution and general condition of 

the animals were monitored. The results showed inflammation or other manifestations of toxic 

effects within 24 hours, suggesting that TiO2 NPs are relatively hazardous (85). 

Silver NPs are another example of NPs potentially useful in medicine due to their antimicrobial 

activity. Their toxicity and biodistribution were analyzed by Mitra Korani in an experiment 

where guinea pigs were dermally exposed to 100, 1,000, and 10,000 ppm of silver NPs of 

different sizes (less than 100 nm). The results showed a close correlation between dermal 

exposure and tissue levels of Ag NPs, with the following ranking: kidney–muscle–bone–skin–

liver–heart–spleen (86).  

Histopathological studies revealed severe proximal convoluted tubule degeneration and distal 

convoluted tubule damage in the kidneys of middle and high-dose animals. Narrowed marrow 

space and separated lines were identified as major signs of bone toxicity observed at all three 

dose levels of Ag NPs. Increased dermal doses of Ag NPs caused cardiocyte deformity, 

congestion, and inflammation. The three different AgNP concentrations produced comparable 

results for several endpoints measured in the heart, bone, and kidney, but differed in tissue 

concentrations and the extent of histopathological changes. Ag ions were detected in different 

organs after dermal exposure, indicating potential target organ toxicities in a time- and dose-

dependent manner (87). 
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Nanoparticles (NPs) such as titanium dioxide (TiO2) are among the most widely used, 

particularly in environmental protection measures. Therefore, it is important to evaluate their 

toxicity and bioavailability through experiments involving their injection into experimental 

animals. In a study by Kiss et al. (88) experimental animals (rats) were injected with a 

suspension of TiO2 NPs at a dose of 15 μg/cm². The biodistribution and general condition of 

the animals were monitored. The results showed inflammation or other manifestations of toxic 

effects within 24 hours, suggesting that TiO2 NPs are relatively hazardous (89). 

Silver NPs are another example of NPs potentially useful in medicine due to their antimicrobial 

activity. Their toxicity and biodistribution were analyzed by Mitra Korani in an experiment 

where guinea pigs were dermally exposed to 100, 1,000, and 10,000 ppm of silver NPs of 

different sizes (less than 100 nm). The results showed a close correlation between dermal 

exposure and tissue levels of Ag NPs, with the following ranking: kidney–muscle–bone–skin–

liver–heart–spleen (90). Histopathological studies revealed severe proximal convoluted tubule 

degeneration and distal convoluted tubule damage in the kidneys of middle and high-dose 

animals. Narrowed marrow space and separated lines were identified as major signs of bone 

toxicity observed at all three dose levels of Ag NPs. Increased dermal doses of Ag NPs caused 

cardiocyte deformity, congestion, and inflammation. The three different Ag NP concentrations 

produced comparable results for several endpoints measured in the heart, bone, and kidney, but 

differed in tissue concentrations and the extent of histopathological changes (91). 

Gold NPs have been shown to be toxic for mice, causing weight loss and a decrease in 

hematocrit and red blood cell count (92). In drug delivery using gold NPs, it is important to 

understand their toxic properties, as the positive effects of their use should outweigh the 

negative ones. One study found that gelatin NPs modified with polyethylene glycol, designed 

for the delivery of ibuprofen sodium salt, were nontoxic at the necessary dose for effective drug 

delivery (1 mg/kg), as confirmed by the estimation of inflammatory cytokine levels in an in 

vivo model and histological analysis of organs (93). 

Carbon Nanotubes (CNTs) in Medicine 

Drug Delivery and Cancer Treatment: CNTs are highly effective in drug delivery due to 

their ability to penetrate cell membranes and deliver drugs directly to target cells. 

Functionalized CNTs can increase the lifespan of drugs in the human body and facilitate 

targeted delivery, which is crucial for cancer treatment (94). 
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Biosensors and Bioimaging: CNTs exhibit intrinsic fluorescence properties, making them 

suitable for biosensing and bioimaging applications. They can detect specific targets in human 

tissues, such as cancer tumors, by binding to DNA molecules and proteins on their surfaces 

(94). 

Tissue Engineering: CNTs have shown significant potential in tissue engineering. They play 

a key role in the culture of tissue cells, such as fibroblasts, and have been used to create 

scaffolds that support cell growth and tissue regeneration (94). 

Toxicity Concerns: Despite their promising applications, the cytotoxicity of CNTs remains a 

concern. Studies have shown that CNTs can pass through membrane barriers and enter organs, 

potentially causing inflammatory and fibrotic responses (95). 

Quantum Dots (QDs) in Medicine 

Biomedical Applications: QDs are nanoparticles with exceptional photobleaching-resistant 

fluorescence, making them ideal for various optical-based biomedical applications. They are 

used in bioimaging, drug delivery, and as biosensors (96). 

Cancer Detection and Treatment: QDs are extensively used in the detection of cancerous 

tumors. They can pass through the blood-brain barrier (BBB) and target brain tumors. CdSe/Zn 

QDs with a diameter of 13 nm have been shown to reach tumor tissue in laboratory mice 

without causing astrocyte damage or nerve inflammation (98). 

Toxicity Concerns: The toxicity of QDs is size-dependent, with smaller QDs (below 20 nm) 

accumulating in the brain parenchyma. Studies have shown that CdTe QDs predominantly 

accumulate in the liver, decreasing antioxidant levels and inducing oxidative stress in liver cells 

(97, 98). The degradation of QDs can release toxic cadmium and tellurium ions, which 

accumulate in various organs and tissues (99). 

Study of Toxicity in Cell Cultures 

1. Oral Uptake: Intestinal epithelium cells are commonly used in experimental models to 

study the toxicity of ingested NPs. These studies focus on the kinetics of NP uptake by cells 

and the viability of cells upon NP uptake. Key markers such as reactive oxygen species (ROS), 

glutathione (GSH), and inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) are often measured 

(100). 
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2. Transdermal Uptake: The toxicity of NPs that enter the body through the skin is usually 

studied in keratinocytes, fibroblasts, and, more rarely, sebocytes. These studies help understand 

the potential effects of NPs used in topical applications and transdermal drug delivery systems 

(101). 

3. Inhalation Uptake: The toxicity of inhaled NPs is studied using primary cell lines and 

different tissues of the respiratory system. Common cell models include: 

• Primary rat brain microvessel endothelial cells (rBMEC) 

• Murine neural stem cells (NSCs) 

• Human pulmonary cell line (A549) 

• Human epithelial cells and fibroblasts (102) 

4. Injection (Drug Delivery and Imaging): NPs used in drug delivery or imaging are 

administered by injection, and their toxicity is studied in primary epithelial cell cultures. 

Various tumor cells are used to evaluate the toxic effects of NPs in cancer chemotherapy, 

including: 

• Gastrointestinal cells 

• Human colon cells 

• Skin cells 

• Pancreatic PANC-1 cells 

• Human lung adenocarcinoma cells 

• Human hepatocellular carcinoma HepG2 cells 

• Human skin carcinoma A431 cells (103). 

Recent Advancements 

1. Cancer Chemotherapy: Recent studies have focused on the use of NPs in cancer 

chemotherapy, evaluating their toxic effects on different cancer cell lines. These studies aim to 

optimize NP formulations to minimize toxicity while maximizing therapeutic efficacy (104). 

2. Respiratory System: Research has shown that inhaled NPs can penetrate deep into the lung 

space, potentially causing respiratory conditions such as asthma and chronic obstructive 
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pulmonary disease (COPD). The extent of toxicity depends on NP characteristics, dose, and 

exposure duration (105). 

3. Transdermal Applications: Advancements in transdermal NP delivery systems have led to 

the development of more effective and less toxic formulations. Studies continue to explore the 

mechanisms of NP penetration through the skin and their interactions with skin cells (106). 

 

 

 

 

 

Conclusions  

Nanoparticles have many biomedical applications due to their unique characteristics such as 

size, shape, chemistry, and charge. However, the signaling pathways through which NPs 

produce toxic effects need to be better understood. Recent studies have shown that 

inflammation, necrosis, ROS, and apoptosis are key factors mediating the mechanism of NP 

toxicity. These results may create barriers to the use of NPs in diagnosis and treatment of 

diseases for which they are ideally suited. 

It is important to identify the dose, shape, and properties of NPs responsible for their toxicity 

to reduce side effects by appropriately modifying the formulation or using NPs with lower 

toxicity. The dose of NPs is a crucial factor in their toxicological profile, along with their 

accumulation, distribution, metabolism, and disposal. Intravenously injected NPs have higher 

toxicity than those administered to the skin. 

According to various studies, protocols should be established to determine which doses and 

structures of NPs are more toxic. The evaluation of NP toxicity is complicated by the disparity 

between different toxicological studies performed on NPs of diverse origins and compositions. 

Therefore, studying NP toxicity in various applications, especially in biomedicine such as drug 

delivery and biosecurity, is crucial. 

There is a need for the development of accepted and specific protocols to identify the actual 

particles, their surface surroundings, and the composition of NPs that render them toxic. It is 
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hoped that increased knowledge of NPs will lead to their safer design with reduced toxicity, 

enabling their use in the treatment of various diseases and drug delivery. 
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