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Abstract 

Malware detection remains a critical challenge in modern cybersecurity due to the rapid 

evolution of attack techniques and the proliferation of adversarial threats. This study introduces 

a robust, explainable framework for malware detection that leverages advanced temporal and 

process-state features. Using VirusTotal, a large dataset of practical metrics, including system, 

memory, and process metrics, was created. Gated Recurrent Units (GRU) and Long Short-Term 

Memory (LSTM) architectures were implemented and frequently tested to model this sequential 

behavioral data. GRU outperformed the others regarding robustness and performance, with 

99.92% accuracy on original data and 92.61% on adversarial data after retraining with 

adversarial examples. It also highlights the importance of interpretability by incorporating SHAP 

(Shapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) 

to provide global and local feature importances. It found that key system characteristics such as 

maj_flt (major faults) and time (user CPU time) were essential for classification, which 

indicates that behavioral patterns may be more important than static implementation in malware 

detection. Furthermore, the adversarial robustness testing phase highlighted resilience against 

such feature perturbations, proving the model's adaptability towards realistic attack scenarios. 

This framework sets a new benchmark in behavior-based malware detection, offering a reliable 

and interpretable solution for modern cybersecurity challenges. 
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1. Introduction 

Malware's increasing complexity and frequency have emerged as major challenges in the current 

cybersecurity landscape (Charmet et al., 2022). As such, malware poses a significant danger, 

continually advancing its ability to exploit system vulnerabilities, circumventing traditional 

safeguards, and executing malicious activities undetected (Amer et al., 2021). The advances in 

malware design (polymorphic and zero-day attacks) make the traditional detection mechanism 

based on signatures ineffective (Galli et al., 2024). One of the big problems with traditional 

systems is that they rely on signature patterns to identify a threat, making it challenging to follow 

new or evolving types of malware accurately. The static defenses are not adaptive, so the systems 

are vulnerable to new adaptive threats, as hackers at each period find new ways by keeping the 

attack protocols. Behaviour-based detection methods have become the best practice over 

signature-based methods (Chamola et al., 2023). Instead, these approaches analyze process and 

system state dynamic behaviors at runtime to produce more elaborate signatures that can be more 

descriptive of malicious actions. Behavior-based methods rely on understanding how malware 

behaves with the system's resources, which allows them to identify abnormal results and discover 

never-seen threats by spotting anomalies. A malicious code would run, e.g., abnormal CPU 

utilization, memory accessed strangely, or process priorities changed (Mehrban et al., 2023). 

Proactive defense mechanisms can help keep systems alive and react to these threats in real-time. 

However, behavior-based detection requires more complex algorithms due to the system 

behaviors' sequential and temporal nature. Sequential data modeling using machine learning is 

another possible domain that could help behavior-based malware detection progress. Due to their 

ability to learn long-term temporal dependencies, Recurrent Neural Networks (RNN) such as Long 

Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) have specific gusto for modeling 

temporal dependencies in the behaviors of the system (Maniriho et al., 2024). With these models, 

we can determine very complex behavioral anomalies that indicate the presence of malware in 

noisy, challenging environments. Nevertheless, the vulnerability of machine learning models to 

adversarial attacks implies that a strong framework should be built to resist adversarial attacks 

(Bhaskara et al., 2023). The rapid advancements in artificial intelligence (AI) have significantly 

transformed the landscape of malware detection. Most traditional methods rely almost solely on 

static signatures or heuristic analysis, limiting the ability to detect new or polymorphic malware. 

On the other hand, AI-driven systems—especially those based on ML—bring a more agile and 

scalable solution, as they can be trained to detect advanced and evolving threats (Ambekar et al., 

2024). An efficient emerging approach is behavior-based detection, exploiting AI and other tools 

to replay deep real-time system activity analyses. AI models can spot deviations from normal 

system behavior by monitoring system and memory metrics and flag anomalous behavior that 

could indicate malware (Afifah & Stiawan, 2019). The most significant benefit of AI-based 

malware detection is that it detects patterns from dynamic system states instead of relying on 

defined signatures. Detection models benefit from incorporating temporal and process-state 

features, which can also improve their ability to detect maliciously. Temporal features, like the 

time series of CPU usage or when system calls are performed, help to capture complex interactions 

between processes and the system (Guendouz et al., 2023). Process-state features (resource usage 

(memory, CPU, disk), process priorities, page faults) are key to understanding program operations 

in benign and malicious scenarios. Longitudinal monitoring of these features enables the detection 
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of even minor deviations from regular, at times more subtle than those visible to the human eye, 

raising a more accurate identification of novel malware attacks than that offered by AI models 

trained on static non-functional code (Malhotra, 2021). The novelty of using these time-related 

and process-state features is that they incorporate signatures of the processes that traditional 

methods cannot capture. Signature-based techniques rely on existing malware signatures to detect 

known malware, but behavior-based AI models can detect abnormal system activity patterns 

learned through training even when the attack is new and known to no one. Organizations can use 

AI and ML-based defense strategies to ensure their IT infrastructure remains intact even when it 

faces novel threats from unknown malware. Detecting these new and unknown threats is especially 

important since malware authors constantly change tactics to avoid detection (Wang et al., 2021). 

The AI models must be robust enough to withstand adversarial attacks, as with all ML systems 

(Danilevsky et al., 2020). One such threat is adversarial attacks, which involve small, carefully 

designed perturbations added to the input data to misdirect the model and make a wrong prediction. 

Within practice, a malware author can camouflage malware to evade detection systems by slightly 

changing its code or behavior. Thus, defending AI models from this kind of adversarial attack is 

pivotal for the trustworthiness and utility of these models when facing the newly emerging threat 

(Kuppa & Le-Khac, 2020). 

This research aims to develop an explainable, behavior-based malware detection model to 

overcome the limitations of traditional signature-based methods. Temporal characteristics (e.g., 

CPU time, process timing) and process-state-based metrics (e.g., memory utilization, page faults) 

will be utilized to describe malware conduct to feed into deep learning models (e.g., LSTM and 

GRU) used to learn from sequences of data. Through retraining with adversarial data, the study 

will examine model performance under normal and adversarial conditions, improving resistance 

to adversarial attacks. SHAP for global feature importance and interpretability, while LIME will 

explain local predictions, thus providing transparency and trust. The end goal is a strong, scalable, 

and explainable malware detection framework. 

 

2. Literature Review 

 

In Since traditional defensive methods are being challenged by the growing complexity and 

sophistication of cyber-attacks, malware detection is a fundamental component of modern 

cybersecurity (Naseer et al., 2021). Traditional detection techniques are no longer suitable 

because malware techniques have increased, such as obfuscation, polymorphism, and zero-day 

attacks (Wang et al., 2021). This section discusses advancements in malware detection techniques 

with an emphasis on behavior-oriented methodologies, ML and DL applications, adversarial 

robustness, and the crucial role of XAI in increasing model trustworthiness (Charmet et al., 2022; 

Chamola et al., 2023). 

 

2.1 Malware Detection Approaches 

In traditional malware detection techniques, Signature- and heuristic-based detection are mainly 

used (Maniriho et al., 2024). This involves matching patterns or parts of this malicious code against 
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a database, also known as signature-based detection, which is known for its speed but ineffective 

in stopping new or polymorphic malware that modifies itself to avoid detection (Namavar et al., 

2020). Heuristic approaches try to derive rules for distinguishing between normal and suspicious 

behavior, but their performance is often limited due to high false positive rates and flexibility 

against advanced threats (Ahmed et al., 2022). On the contrary, behavior-based detection, where 

false behavior is monitored to detect malware, has become a solid alternative, especially in 

monitoring run-time actions such as system logs, memory access, and energy usage (Alaeiyan et 

al., 2023). Behavior-based approaches create a defensive posture that prevents obfuscation and 

new attacks by identifying anomalies, i.e., peak CPU activity, a combination of page faults, or 

unexpected accesses to a memory region (Finder et al., 2022). Behavior-based methods incorporate 

machine learning (ML) to automate pattern recognition, where the model can now apply classifiers 

to identify malware as subtle changes in the behavior of what is malicious and what is benign 

(Galli et al., 2024). 

 

2.2 AI and Deep Learning in Malware Detection 

Artificial intelligence (AI) and deep learning (DL) have revolutionized malware detection by 

enabling systems to learn complex patterns in system behaviors (Singh & Singh, 2021). Sequential 

data can be naturally modeled by RNN, LSTM, and GRU (e.g., system logs and temporal features 

are also a sequence) (Kolosnjaji et al., 2016). They can capture dependencies in the time-series 

data reflecting malware analysis, such as Memory Utilization, CPU allocation, and process 

scheduling (Naseer et al., 2021). Previous works indicated that LSTM and GRU are effective for 

features like page faults, resource counters, and state transitions (Venkatraman et al., 2019). For 

example, GRU models have performed well on API call sequences, while LSTMs exhibited 

SOTA results on temporal anomalies (Mpanti et al., 2018). To further enhance precision, the recent 

work combines deep learning with hybrid methods (Liras et al., 2021), e.g., convolutional layers 

fused with RNNs, to learn the spatial and temporal patterns in malware binaries. To circumvent 

these restrictions and extend competencies, behavior-driven AI models use system logs, process 

behaviors, and temporal metrics (Maniriho et al., 2024). 

 

2.3 Adversarial Testing in AI Models 

Adversarial attacks significantly threaten the robustness of AI-based malware detection (Bhaskara 

et al., 2023). Adversarial (bounded) attacks are a type of attack that generates small intentional 

perturbations of input data types—for instance, slight modifications to sequences of Application 

Programming Interface (API) calls or changes in resource usage metrics—that can result in models 

misclassifying malicious samples as benign (Ambekar et al., 2024). Adversarial robustness is 

crucial for safeguarding the integrity of AI systems, especially in high-stakes cybersecurity 

contexts (Afifah & Stiawan, 2019). The extant methods that attempt to counter adversarial threats 

include adversarial training, a technique that retrains a model on data altered in an adversarial 

direction to make the model more robust, and defensive distillation that makes a model less 

sensitive to small perturbations by refining its decision boundaries (Cui et al., 2019). Robustness 
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is also enhanced with hybrid frameworks that use combinations of static, dynamic, and behavior-

based features, increasing multiple layers of protection against evasion techniques (Venkatraman 

et al., 2019). However, many contemporary models do not focus on adversarial robustness, which 

places detection systems at risk of sophisticated attacks (Bhaskara et al., 2023). Tools like SHAP 

and LIME can assist in identifying potential adversarial weaknesses by revealing features integral 

to the model’s decision-making process (Charmet et al., 2022).  

 

While there has been much advancement in behavior-based malware detection, there is still a 

significant research gap, especially in explainability. Most of the proposed solutions have 

interpretable frameworks (Lundberg et al., 2017), while deep learning models were considered 

black boxes that cannot justify their predictions, thus questioning trust and usability (Kuppa et al., 

2020). SHAP or LIME are tools that have not been leveraged often; consequently, transparency is 

hard to achieve (Chamola et al., 2023). Also, adversarial robustness has not been addressed 

broadly, with only a few works covering adversarial training or performance analysis (Singh & 

Singh, 2021). Likewise, temporal and process-state features, such as millisecond-level timing, 

state transitions, and memory metrics, are also not being fully leveraged, thus limiting the ability 

to capture dynamic system behaviors (Venkatraman et al., 2019) in entirety. This also hinders the 

generalization in detection models (Naseer et al., 2021), along with a lack of multiple labeled data. 

These gaps must be addressed to create strong, interpretable, and adversarially robust malware 

detection systems (Bhaskara et al., 2023). To address these gaps, this study proposes an 

explainable, adversarially robust detection framework using GRU and LSTM-based architectures 

(Andrade et al., 2023). 

 

3. Methodology 

 

3.1 Dataset Description 

This study uses a dataset from VirusTotal, a widely relied-upon malware analysis system, which 

contains a rich feature set meant to capture the temporal, system-level, and behavioral attributes 

of processes. It is a binary classification dataset of two classes: malware and benign. The features 

fall into four broad categories to capture system and process behaviors more completely. These 

metrics are temporal (timestamps in milliseconds) or system-related (prior, static_prio) metrics. 

The state features give important context on what is happening with the processes (e.g., whether 

they are running, sleeping, or being stopped) and can help identify malicious activity (Cui et al., 

2019). Another set of core features is memory statistics, detailing trends in resource usage often 

leveraged by malware. For instance, metrics such as cached_hole_size, free_area_cache, and 

task_size provide information about memory management that malware could abuse (Mpanti et 

al., 2018). Page fault counters are measured together with nvcsw (walk-through context switches), 

nivcsw (involuntary context switches), maj_flt (major page faults), and min_flt (minor page 

faults), and they can provide insight into how often the system is being disrupted or distorted by 

rogue malware (Ucci et al., 2018). Lastly, timing properties and features, such as time (user CPU 

time), time (system CPU time), and time (thread executed time), provide a temporal view of 



1. NHM Hassan Imam Chowdhury,  

2. Md. Ezharul Islam, 3. Md. Sunjid 

Hasan, 4. Abdullah Al Mehedi 

AI-Powered Behavior-Based Malware 

Detection Using Advanced Temporal and 

Process-State Features: A Robust Explainable 

Framework. 

 

Cuest.fisioter.2025.54(3):3883-3902                                                                     3888 

 

 

process behavior, which can help in the detection of subtle, rare abnormalities in resource 

consumption (Kaya et al., 2024). 

3.2 Data Preprocessing 

Data pre-processing is an important step to ensure that the dataset's quality is good enough and 

that the dataset is in a format that can be fed into a sequential deep-learning model (Sarna et al., 

2024). All numerical features have been normalized between 0 and 1 using MinMax scaling 

(Namavar et al., 2020). The first normalization step was needed to account for differences in the 

scales of the various features since the values of the inputs for the model training and convergence 

processes needed to be as efficient as possible, specifically memory use, CPU times, and the 

number of page faults. Data in the sets were segmented into three categories: training set, 

validation set, and application set (Liras et al., 2021). The training set (just over 75 - 85% of the 

data) was used to optimize model parameters, and the validation set was used to evaluate 

performance during training and to tune hyperparameters (Guendouz et al., 2023). The test set 

was not used until this final evaluation step to allow for an unbiased estimate of model 

generalization ability (Wang et al., 2021). The data is temporally ordered, so sequences were 

preserved in the train/test splits temporally. 

3.3 Model Architectures 

LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) networks are two of the 

most common architectures of recurrent neural networks that can be applied to analyze sequential 

data and were deployed in this study for malware detection. The reason we chose these two models 

specifically was that they are both based on long short-term memory (LSTM), which has proven 

effective in modeling long-term dependencies in temporal data, an important characteristic to 

guarantee the detection of patterns in system behaviors and anomalous detection of any malicious 

activity (Alaeiyan et al., 2023) refer to LSTM and GRU networks as indirect representations and 

found that these networks use hidden states over time to process data organized as sequences. 

LSTM models are particularly effective at modeling long-term dependencies thanks to their unique 

gating mechanisms, which allow them to limit how much information is allowed through 

(Manthena et al., 2023). The GRU architecture is arguably simpler, and GRU models with fewer 

parameters have been shown to achieve competitive performance and are computationally cheaper 

than the LSTM, which has no drop in accuracy (Galli et al., 2024). 
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Fig. 1: Illustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o are 

the input, forget and output gates, respectively. c and c~ denote the memory cell and the 

new memory cell content. (b) r and z are the reset and update gates, and h and h~ are 

the activation and the candidate activation.(gabormelli) 

Both architectures are suitable for sequentially related input features like system logs, resource 

usage logs and process state (Kaya et al., 2024). The layered architecture of the models is 

optimized for binary classification (Kolosnjaji et al., 2016). This first layer processed normalized 

feature vectors for temporal and process-state metrics (Danilevsky et al., 2020). 

Parameter LSTM GRU 

Activator Sigmoid Sigmoid 

Optimizer Adam Adam 

Learning Rate 
Default 

(Adam) 
Default (Adam) 

Loss Function 

Binary 

Cross-

Entropy 

Binary Cross-

Entropy 

Layers 2 2 

Neurons per 

Layer 

64 (1st 

layer), 32 

(2nd layer) 

64 (1st layer), 32 

(2nd layer) 

Dropout Rate 0.2 0.2 

Batch Size 32 32 

Epochs 10 10 

Patience for 

Early Stopping 
3 3 

 

Table 1: Description of LTSM and GRU Architecture 

To learn sequential dependencies, we used two recurrent layers: the first laid down 64 LSTM/GRU 

units with return sequences set to true for the layers to continue looking for patterns after this (Galli 

et al., 2024). In contrast, the second one contained 32 units to refine the patterns even more 

(Kolosnjaji et al., 2016). To avoid overfitting, we introduced dropout layers with a value of 20% 

https://www.gabormelli.com/RKB/LSTM
https://www.gabormelli.com/RKB/Gated_Recurrent_Unit
https://www.gabormelli.com/RKB/input
https://www.gabormelli.com/RKB/index.php?title=forget&action=edit&redlink=1
https://www.gabormelli.com/RKB/index.php?title=output_gate&action=edit&redlink=1
https://www.gabormelli.com/RKB/memory_cell
https://www.gabormelli.com/RKB/memory_cell
https://www.gabormelli.com/RKB/index.php?title=reset&action=edit&redlink=1
https://www.gabormelli.com/RKB/index.php?title=update_gate&action=edit&redlink=1
https://www.gabormelli.com/RKB/Activation_Function
https://www.gabormelli.com/RKB/Activation_Function
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after each recurrent layer (Mane & Rao, 2021). The final dense layer used a sigmoid activation 

function that gave the sample probability to be in a vibration or benign class (Namavar et al., 

2020). We used binary cross-entropy loss function for both models as it is the suggested loss 

function for binary classification tasks. We used the Adam optimizer (Gupta et al., 2025), which 

adapts the learning rate, allowing the model to converge more quickly and stably. Training was 

stopped if the validation loss did not improve for three epochs (early stopping). Training consisted 

of a maximum of 10 epochs, using a batch size of 32 to balance compute efficiency with 

performance. This means that the data was reshaped to the sequential dimension, which will be 

needed for all the models I am going to present so that every model architecture can expect its 

input in that specific format. The approach included adversarial testing and retraining to strengthen 

the LSTM and GRU models (Galli et al., 2024). Most of the generated adversarial samples are 

perturbed samples based on a small offset of feature values, adding Gaussian noise while ensuring 

they still look realistic. This method focused on important system behaviors, including memory 

use, page faults, and CPU timings (Alaeiyan et al., 2023), to evaluate model sensitivity to 

perturbations. The general dataset was then supplemented with these adversarial samples to 

enhance the training set and model robustness (Ribeiro et al., 2016). Instead of directly exposing 

the models to adversarial examples, the models were retrained with clean and adversarial data 

(Kaya et al., 2024), learning to differentiate malware characteristics from noise. In order to 

preserve transparency and ensure the model's reliability, explainability tools (Lundberg et al., 

2017) such as SHAP and LIME were employed. 

 

 

 

   

 

 

 

 

 

  

 

Fig. 2: Methodological workflow of proposed malware detection system 

SHAP gave a global map of feature significance reporting high-significance features like major 

page faults (maj_flt), user CPU time (time), and process priority (prior) in malware detection 

Input Data 

Preprocessing 

Recurrent Layer Adversarial Retraining 

Interpretability (XAI) 
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(Afifah & Stiawan, 2019). An example of local interpretations would be the LIME (Local 

Interpretable Model-agnostic Explanations) algorithm, which perturbs specific input parts and fits 

a simple model to explain specific predictions (Lundberg & Lee, 2017). Furthermore, the 

framework maintained both global and local interpretability by integrating SHAP and LIME to 

close the transparent versus performance gap in cybersecurity applications (Kuppa & Le-Khac, 

2020). 

 

4. Result Analysis 

 

4.1 Model Performance 

The performance of the LSTM and GRU models was evaluated using key metrics: accuracy, 

precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). 

These metrics were analyzed under three scenarios: original data, adversarial data, and retrained 

adversarial data. 

 

Metric LSTM GRU 

Accuracy 99.44% 99.92% 

Precision 99.39% 99.92% 

Recall 99.49% 99.93% 

F1-Score 99.44% 99.92% 

AUC-ROC 99.96% 99.99% 

 

Table 2: Comparison of accuracy, precision, recall, F1-score between LTSM and GRU 
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Fig. 3: Accuracy comparison between LTSM and GRU 

 

Both models achieved very good classification performance on the raw data. Figure 3 indicates 

that the performance of the GRU with an accuracy of 99.92% slightly outperformed LSTM, 

99.44%. Both models achieved AUC-ROC values greater than 0.99, demonstrating extreme 

discrimination between malware and benign samples. GRU showed greater precision and recall 

by producing the least false positive and false negative instances, which certifies that the models 

could be successfully generalized with the clean datasets. Adversarial robustness plays a crucial 

role in evaluating the reliability of AI models in cybersecurity by ensuring they are robust to 

attempts to tamper and evade detection. This work focuses on adding especially noise into input 

features in an adversarial testing method, e.g., effective va, reliable, effective memory usage, page 

fault, timings of process, kernel and process states, etc. As can be seen from Figure 4, both models 

performed worst on our dataset. GRU managed to retain 77.96% accuracy, while LSTM was 

74.65%. Although this reduced accuracy, GRU showed better robustness overall, achieving higher 

accuracy and recall than LSTM, demonstrating its capacity to detect malware in adversarial 

environments. Our models both achieved an AUC-ROC above 0.85, indicating that our models 

could still discriminate malware from benign examples under adversarial perturbation. 
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Fig. 4: Comparison of original and adversarial accuracy between LTSM and GRU 

 

 
Fig. 5: Precision and recall comparison for both original and adversarial between LTSM and 

GRU 

 

Under adversarial test conditions, both models' precision and recall performance were severely 

affected, meaning the ability of the models to classify the test samples correctly was significantly 

reduced. If we discuss the LSTM model, as shown in Figure 5, the accuracy was 99.4 % for the 

original and 85.4 % for the adversarial. Similarly, the initial recall of 99.5% of LSTM decreased 

very quickly to 59.3% in adversarial conditions, accounting for more false negatives. GRU, on the 

other hand, was less affected. Initially, the precision was 99.9%, adversarial precision dropped to 

86.5%, and the model performed better than LSTM.   

 

GRU also achieved better recall than LSTM, with GRU's original recall being 99.9% and 

adversarial recall of 66.1%, suggesting that GRU is better at identifying malware after intended 

perturbation. Both models saw a sharp drop in performance, with recall taking the biggest hit. In 

contrast, GRU achieved consistently improved performance over LSTM when manipulating 

adversarial data, achieving higher precision and recall; it appears GRU was the more stable 
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solution to the adversarial problem. The ROC curve further corroborated these findings and AUC 

score analysis, demonstrating the clear degradability the models could provide for malware and 

benign samples under both original and adversarial scenarios. Figure 6 shows that the AUC of 

LSTM was 0.9996 without adversarial perturbations and decreased to 0.8556 with adversarial 

perturbations. However, GRU retained an ideal AUC of 1.0000 on original data, decreasing 

slightly to 0.8681 under adversarial conditions, indicating enhanced robustness. The performance 

of either model was near perfect in original conditions on the task, with both attaining almost a 

perfect AUC score. However, when evaluated on the adversarial ROC curves, the degradation was 

visible, with GRU demonstrating noteworthy resilience over LSTM. 

 

Adversarial retraining significantly improved the models' performance under adversarial 

conditions. By incorporating adversarial samples into the training process, Figure 7 shows that 

the GRU model achieved an accuracy of 92.61%, while LSTM slightly outperformed it with 

92.69%. Enhanced recall and F1 scores highlighted the models' improved ability to reliably detect 

malware in adversarial scenarios. 

 

 
Fig. 6: ROC-AUC comparison between LTSM and GRU 

 
Fig.  7: Comparison of adversarial retraining for LTSM and GRU 
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Figure 8 presents the testing accuracy for both models under original and modified adversarial 

conditions. In the first figure (original performance), both models demonstrate strong performance 

from the start, with GRU outperforming LSTM in the early epochs, converging faster, and 

achieving nearly perfect accuracy (~99.9%) by the 10th epoch. Both models stabilize around the 

seventh epoch, suggesting excellent capacity for behavior-based malware detection on the original 

dataset. Both models show steady improvement in the second figure (modified adversarial 

performance), with GRU maintaining a slight advantage throughout. GRU achieves a final 

accuracy of 96.57%, slightly higher than LSTM’s 96.21%, reflecting its superior robustness to 

adversarial conditions. Both models converge after the eighth epoch, demonstrating the 

effectiveness of adversarial training in enhancing their resilience to adversarial manipulation. To 

mitigate these vulnerabilities, adversarial retraining was conducted using a combined dataset of 

original and adversarial samples. 

 

 

Fig. 8: Comparison of LSTM and GRU models' accuracy over epochs for original and modified 

adversarial data, highlighting GRU's superior performance. 

 

As illustrated in Figure 9, both the retrained GRU (92.61%) and LSTM (92.69%) models realized 

superior degrees of precision. Both models consistently outperformed others on recall and F1, 

reinforcing their robustness to adversarial attacks. These results highlight the need for adversarial 

retraining to enhance the robustness of malware detectors, ensuring that these systems perform as 

intended in dangerous real-world environments.  

 

 
Fig. 9: LTSM and GRU accuracy comparison 
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This will enable the existing models to generalize better to unseen perturbations and thus offer 

protection against sophisticated evasion techniques now seen in some of the most advanced 

malware variants. We can firmly assert that this assertive behavior is a strength in the adversarial 

setup, which, whenever, bounds the performance reliability and effectiveness of the framework, 

which serves as one of the prime criteria for any modern-day malware detection techniques.GRU's 

consistency across all conditions, combined with its computational efficiency, makes it a strong 

candidate for real-world, behavior-based malware detection. 

 

4.2 Feature Importance Analysis for LSTM and GRU using Explainable AI (SHAP) 

A behavior-based malware detection framework developed in this study relied on a feature 

importance analysis using SHAP to better understand the data analysis results. This gave us a 

global overview of the most influential features for the LSTM and GRU models, contributing to 

interpretability and confirming the feature set. The LSTM model showed key features such as 

major page fault (maj_flt), which indicates abnormal memory access patterns; user CPU time 

(time), which reflects resource-intensive behavior of malware; static version (static_prio), which 

signals system-level manipulation; and time delta (time delta) that aids identifying suspicious 

behaviors, including zero-day threats. The distribution of importance of the features used in the 

LSTM model is shown in the SHAP summary plot (Figure 10), further revealing the prominent 

significance of the temporal and system-level metrics involved in accurate malware detection. As 

with the LSTM model, the GRU model also highlighted key features — such as major page faults 

(maj_flt), user CPU time (time), and static priority (static_prio) — as being significant in 

classifying benign and malicious behaviors. The GRU model also used the memory users 

(mm_users) feature, which gives an even more comprehensive description of the process behavior, 

raising the model performance on both architectures. The SHAP summary plot for GRU (Figure 

10) is consistent with LSTM as a reliable model consistent with temporal and process-state 

features. 

 

 
Fig. 10: LSTM (left) and GRU (right) SHAP Summary 
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The LSTM and GRU models deemed some of the same features important (maj_flt, time, 

static_prio), yet the GRU had higher SHAP values for values related to memory use (e.g., 

mm_users) and resource allocation features, indicating its responsiveness to complex and subtle 

behaviors. The disparity, along with the CRUB’s computational efficiency, makes GRU well 

suited for real-time malware detection. In general, the analysis of feature importance using SHAP 

indicates that the significance of features, such as maj_flt, time, and static_prio, in the behavior-

based malware detection scheme is inherent and remains unchanged, thus substantiating the 

stability and credibility of the proposed architecture for high-impact cybersecurity applications. 

 

4.3 Local Interpretability with Explainable AI (LIME) for LSTM and GRU 

Local interpretability via LIME (Local Interpretable Model-Agnostic Explanations) enriches the 

understanding of how each prediction of the LSTM and GRU models was derived, thus increasing 

transparency and trust when risk is high, as with cybersecurity applications. For LIME, the 

explanations are generated via perturbing input samples and determining how the model 

predictions change. In a single instance studied for the LSTM model, a sample identified as 

"malware" was predominantly characterized by an increase in major page faults (maj_flt), 

indicating unusual behavior regarding memory usage, followed by an increase in the user CPU 

time (utime) which suggested that the process performed intensive resource usage typical for 

malware and deviations in the static priority (static_prio), which suggested manipulation of system 

resources by apparitional software. 

 

Fig. 12: LSTM LIME 

 

In the LIME explanation, the bar chart in Figure 12 effectively shows how these features positively 

contribute to classifying the sample as malware. For instance, it explained more than 40% of 

prediction probability, followed by time, which explained about 25%. The greater granularity of 

potential insights allows cybersecurity analysts to extrapolate specific model features that indicate 

the rationale behind the model’s action and decide on further actions. A similar case study for the 

GRU model highlighted the effectiveness of LIME in providing local interpretability. In this 

instance, a sample classified as “malware” was primarily influenced by major page faults (maj_flt), 

mirroring the LSTM model’s reliance on this feature. Additionally, the GRU model demonstrated 

increased sensitivity to memory users (mm_users), capturing nuanced memory allocation patterns, 

and flagged subtle irregularities in CPU timing (time_delta), emphasizing its ability to detect 

temporal anomalies. This reinforces the GRU model’s proficiency in identifying complex 

behaviors indicative of malware. The LIME explanation (Figure 13) visualizes features’ positive 

and negative contributions. For example, maj_flt alone contributed more than 35% in malware 

classification, while mm_users and time_delta contributed another large portion. Those discrete 
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classes provide action points for analysts to understand the behaviors that made the GRU model 

perceive malware. 

 

 
Fig. 13: GRU LIME 

 

Despite the similarities, both models were focused on different features. The maj_flt and time 

remained consistent across both models, but the GRU model placed a more significant emphasis 

on anything related to memory usage, such as mg_users. This further emphasized its superior 

capacity to generalize and see patterns across resource allocations. This difference stresses GRU’s 

superiority in interpretability and robustness in behavior-based malware detection. 

 

4.4 Comparison with Prior Work 

 

Study Model 

Accuracy 

on Clean 

Data (%) 

Adversarial 

Robustness 

(%) 

Explainability 

(XAI Tools) 
Feature Set 

Proposed 

Framework 

(GRU) 

GRU 99.92 92.61 SHAP, LIME 

Temporal and 

process-state 

features (e.g., 

maj_flt, utime, 

prio) 

(Gupta et 

al., 2025) 
GRU 99.70% N/A None 

Android malware 

detection temporal 

features 

(Manthena 

et al., 

2023) 

SDEL 99.87% N/A 
SHAP, LIME, 

LRP 

Pixel 

representations of 

malware binaries. 

(Galli et 

al., 2024) 

LSTM, 

GRU 

99.43 

(LSTM) 
N/A 

SHAP, LIME, 

Attention, LRP 

Behavioral API 

call sequences 

(e.g., API call 

importance in 

malware 

prediction) 

(Shakib, 

2023) 

GRU 

(Geneti

cAI) 

99.77 N/A None 
Android malware 

detection features 
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Zhang et 

al. (2021) 

CNN + 

GAN 
94.5 85.4 None 

Malware images 

generated by GAN 

Venkatram

an et al. 

(2019) 

GRU + 

CNN 
97.5 85.2 None 

API calls, system 

events 

 

Table 3: Comparison with existing work 

 

This table highlights that the Proposed Framework (GRU) outperforms many existing methods, 

particularly excelling in accuracy on clean data and demonstrating robust adversarial performance. 

Unlike previous works, it integrates SHAP and LIME for explainability, ensuring transparency in 

predictions and addressing the black-box nature of many deep learning models. Additionally, the 

study leverages temporal and process-state features, which significantly enhance the detection of 

both known and novel malware, surpassing traditional signature-based and handcrafted feature 

methods. 

 

 

5. Implications, Limitations and Future Work 

 
Behavior-based malware detection architecture has a significant advantage in real-life security 

systems owing to its wide applicability when combined with IDSs and EDSs to detect better 

malicious behavior (Afifah & Stiawan, 2019). With behavior-based detection, unlike signature-

based systems, novel malware detection becomes a challenge. Based on real-time, behavior-driven 

detection (Andrade et al., 2019), the framework minimizes malware damage and its explainability 

with LIME and SHAP, which builds sufficient trust for in-the-wild deployment in high-risk 

environments (Shakib, 2023). The GRU model is included to facilitate data processing (Galli et 

al., 2024). However, some limitations are reliance on the VirusTotal dataset, which does not cover 

all types of malware, and scalability issues with the increasing datasets that must be addressed. 

Computational complexity (especially GRU and LSTM models have posed challenges using low-

resource devices). Future work should also focus on hybrid architectures combining GRU and 

attention mechanisms to improve detection accuracy and adversarial testing to overcome more 

sophisticated evasion strategies. Moreover, generalizes and strengthens the framework to react to 

cybersecurity threats, thus increasing the diversity of the sources included in the dataset. So, 

ongoing refinement and extension of the framework will eventually make it relevant to all 

environments, thus enhancing the reliability of the framework in dynamic and real-world settings. 

This continuous development will ensure it stays relevant and can combat new and more advanced 

malware threats. 

 

 

6. Conclusion 
 

This study introduces a robust, explainable malware detection framework that integrates temporal 

and process-state features with advanced GRU and LSTM models. The framework utilizes these 

models to capture sequential dependencies and process system behaviors over time, significantly 

improving malware detection over traditional approaches. In particular, the GRU model also gave 
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superior outperformance in adversarial situations, recording a 92.61% accuracy in adversarial 

retraining, making it resilient against attacks. It is important in real-world cyber security systems 

that the detection of evasive adversaries is accurate, and showing strong performance against these 

adversarial attacks highlights the framework's utility. On the other hand, the integrated SHAP and 

LIME interpretability tools give additional confidence and transparency with important global 

features and explanations of local models. They allow cybersecurity practitioners to understand 

how predictions are derived through a model, thus empowering confidence in employing AI-based 

detection systems during critical times. Using SHAP, we aggregated features that filtered out 

malware from benign processes, and significant features were identified as important (e.g., maj_flt, 

time, and prior). Besides demonstrating the framework's flexibility, LIME has exposed the frame's 

single predictions, which are also very important in tuning security protocols for improvement 

and better opportunity prediction. Its potential to withstand adversarial manipulations while 

maintaining high detection performance positions it as a promising solution for real-world, high-

risk malware detection and prevention applications.  
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