

Cuest.fisioter.2025.54(3):3883-3902 3883

Original

AI-Powered Behavior-Based Malware Detection Using

Advanced Temporal and Process-State Features: A Robust

Explainable Framework.

NHM Hassan Imam Chowdhury1*, Md. Ezharul Islam2, Md. Sunjid Hasan3, Abdullah Al

Mehedi4

1, 3, 4Department of ICT, Bangladesh University of Professionals, Dhaka,

Bangladesh
2 Professor, Department of CSE, Jahangirnagar University, Dhaka Bangladesh

*Corresponding Author:

NHM Hassan Imam Chowdhury

Email: rafichowdhury60@gmail.com

Orchid ID: https://orcid.org/0009-0007-2913-9611

Abstract

Malware detection remains a critical challenge in modern cybersecurity due to the rapid

evolution of attack techniques and the proliferation of adversarial threats. This study introduces

a robust, explainable framework for malware detection that leverages advanced temporal and

process-state features. Using VirusTotal, a large dataset of practical metrics, including system,

memory, and process metrics, was created. Gated Recurrent Units (GRU) and Long Short-Term

Memory (LSTM) architectures were implemented and frequently tested to model this sequential

behavioral data. GRU outperformed the others regarding robustness and performance, with

99.92% accuracy on original data and 92.61% on adversarial data after retraining with

adversarial examples. It also highlights the importance of interpretability by incorporating SHAP

(Shapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations)

to provide global and local feature importances. It found that key system characteristics such as

maj_flt (major faults) and time (user CPU time) were essential for classification, which

indicates that behavioral patterns may be more important than static implementation in malware

detection. Furthermore, the adversarial robustness testing phase highlighted resilience against

such feature perturbations, proving the model's adaptability towards realistic attack scenarios.

This framework sets a new benchmark in behavior-based malware detection, offering a reliable

and interpretable solution for modern cybersecurity challenges.

Keywords: Malware Detection, Adversarial Robustness, Explainable AI, LSTM, GRU

https://orcid.org/0009-0007-2913-9611

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3884

1. Introduction

Malware's increasing complexity and frequency have emerged as major challenges in the current

cybersecurity landscape (Charmet et al., 2022). As such, malware poses a significant danger,

continually advancing its ability to exploit system vulnerabilities, circumventing traditional

safeguards, and executing malicious activities undetected (Amer et al., 2021). The advances in

malware design (polymorphic and zero-day attacks) make the traditional detection mechanism

based on signatures ineffective (Galli et al., 2024). One of the big problems with traditional

systems is that they rely on signature patterns to identify a threat, making it challenging to follow

new or evolving types of malware accurately. The static defenses are not adaptive, so the systems

are vulnerable to new adaptive threats, as hackers at each period find new ways by keeping the

attack protocols. Behaviour-based detection methods have become the best practice over

signature-based methods (Chamola et al., 2023). Instead, these approaches analyze process and

system state dynamic behaviors at runtime to produce more elaborate signatures that can be more

descriptive of malicious actions. Behavior-based methods rely on understanding how malware

behaves with the system's resources, which allows them to identify abnormal results and discover

never-seen threats by spotting anomalies. A malicious code would run, e.g., abnormal CPU

utilization, memory accessed strangely, or process priorities changed (Mehrban et al., 2023).

Proactive defense mechanisms can help keep systems alive and react to these threats in real-time.

However, behavior-based detection requires more complex algorithms due to the system

behaviors' sequential and temporal nature. Sequential data modeling using machine learning is

another possible domain that could help behavior-based malware detection progress. Due to their

ability to learn long-term temporal dependencies, Recurrent Neural Networks (RNN) such as Long

Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) have specific gusto for modeling

temporal dependencies in the behaviors of the system (Maniriho et al., 2024). With these models,

we can determine very complex behavioral anomalies that indicate the presence of malware in

noisy, challenging environments. Nevertheless, the vulnerability of machine learning models to

adversarial attacks implies that a strong framework should be built to resist adversarial attacks

(Bhaskara et al., 2023). The rapid advancements in artificial intelligence (AI) have significantly

transformed the landscape of malware detection. Most traditional methods rely almost solely on

static signatures or heuristic analysis, limiting the ability to detect new or polymorphic malware.

On the other hand, AI-driven systems—especially those based on ML—bring a more agile and

scalable solution, as they can be trained to detect advanced and evolving threats (Ambekar et al.,

2024). An efficient emerging approach is behavior-based detection, exploiting AI and other tools

to replay deep real-time system activity analyses. AI models can spot deviations from normal

system behavior by monitoring system and memory metrics and flag anomalous behavior that

could indicate malware (Afifah & Stiawan, 2019). The most significant benefit of AI-based

malware detection is that it detects patterns from dynamic system states instead of relying on

defined signatures. Detection models benefit from incorporating temporal and process-state

features, which can also improve their ability to detect maliciously. Temporal features, like the

time series of CPU usage or when system calls are performed, help to capture complex interactions

between processes and the system (Guendouz et al., 2023). Process-state features (resource usage

(memory, CPU, disk), process priorities, page faults) are key to understanding program operations

in benign and malicious scenarios. Longitudinal monitoring of these features enables the detection

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3885

of even minor deviations from regular, at times more subtle than those visible to the human eye,

raising a more accurate identification of novel malware attacks than that offered by AI models

trained on static non-functional code (Malhotra, 2021). The novelty of using these time-related

and process-state features is that they incorporate signatures of the processes that traditional

methods cannot capture. Signature-based techniques rely on existing malware signatures to detect

known malware, but behavior-based AI models can detect abnormal system activity patterns

learned through training even when the attack is new and known to no one. Organizations can use

AI and ML-based defense strategies to ensure their IT infrastructure remains intact even when it

faces novel threats from unknown malware. Detecting these new and unknown threats is especially

important since malware authors constantly change tactics to avoid detection (Wang et al., 2021).

The AI models must be robust enough to withstand adversarial attacks, as with all ML systems

(Danilevsky et al., 2020). One such threat is adversarial attacks, which involve small, carefully

designed perturbations added to the input data to misdirect the model and make a wrong prediction.

Within practice, a malware author can camouflage malware to evade detection systems by slightly

changing its code or behavior. Thus, defending AI models from this kind of adversarial attack is

pivotal for the trustworthiness and utility of these models when facing the newly emerging threat

(Kuppa & Le-Khac, 2020).

This research aims to develop an explainable, behavior-based malware detection model to

overcome the limitations of traditional signature-based methods. Temporal characteristics (e.g.,

CPU time, process timing) and process-state-based metrics (e.g., memory utilization, page faults)

will be utilized to describe malware conduct to feed into deep learning models (e.g., LSTM and

GRU) used to learn from sequences of data. Through retraining with adversarial data, the study

will examine model performance under normal and adversarial conditions, improving resistance

to adversarial attacks. SHAP for global feature importance and interpretability, while LIME will

explain local predictions, thus providing transparency and trust. The end goal is a strong, scalable,

and explainable malware detection framework.

2. Literature Review

In Since traditional defensive methods are being challenged by the growing complexity and

sophistication of cyber-attacks, malware detection is a fundamental component of modern

cybersecurity (Naseer et al., 2021). Traditional detection techniques are no longer suitable

because malware techniques have increased, such as obfuscation, polymorphism, and zero-day

attacks (Wang et al., 2021). This section discusses advancements in malware detection techniques

with an emphasis on behavior-oriented methodologies, ML and DL applications, adversarial

robustness, and the crucial role of XAI in increasing model trustworthiness (Charmet et al., 2022;

Chamola et al., 2023).

2.1 Malware Detection Approaches

In traditional malware detection techniques, Signature- and heuristic-based detection are mainly

used (Maniriho et al., 2024). This involves matching patterns or parts of this malicious code against

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3886

a database, also known as signature-based detection, which is known for its speed but ineffective

in stopping new or polymorphic malware that modifies itself to avoid detection (Namavar et al.,

2020). Heuristic approaches try to derive rules for distinguishing between normal and suspicious

behavior, but their performance is often limited due to high false positive rates and flexibility

against advanced threats (Ahmed et al., 2022). On the contrary, behavior-based detection, where

false behavior is monitored to detect malware, has become a solid alternative, especially in

monitoring run-time actions such as system logs, memory access, and energy usage (Alaeiyan et

al., 2023). Behavior-based approaches create a defensive posture that prevents obfuscation and

new attacks by identifying anomalies, i.e., peak CPU activity, a combination of page faults, or

unexpected accesses to a memory region (Finder et al., 2022). Behavior-based methods incorporate

machine learning (ML) to automate pattern recognition, where the model can now apply classifiers

to identify malware as subtle changes in the behavior of what is malicious and what is benign

(Galli et al., 2024).

2.2 AI and Deep Learning in Malware Detection

Artificial intelligence (AI) and deep learning (DL) have revolutionized malware detection by

enabling systems to learn complex patterns in system behaviors (Singh & Singh, 2021). Sequential

data can be naturally modeled by RNN, LSTM, and GRU (e.g., system logs and temporal features

are also a sequence) (Kolosnjaji et al., 2016). They can capture dependencies in the time-series

data reflecting malware analysis, such as Memory Utilization, CPU allocation, and process

scheduling (Naseer et al., 2021). Previous works indicated that LSTM and GRU are effective for

features like page faults, resource counters, and state transitions (Venkatraman et al., 2019). For

example, GRU models have performed well on API call sequences, while LSTMs exhibited

SOTA results on temporal anomalies (Mpanti et al., 2018). To further enhance precision, the recent

work combines deep learning with hybrid methods (Liras et al., 2021), e.g., convolutional layers

fused with RNNs, to learn the spatial and temporal patterns in malware binaries. To circumvent

these restrictions and extend competencies, behavior-driven AI models use system logs, process

behaviors, and temporal metrics (Maniriho et al., 2024).

2.3 Adversarial Testing in AI Models

Adversarial attacks significantly threaten the robustness of AI-based malware detection (Bhaskara

et al., 2023). Adversarial (bounded) attacks are a type of attack that generates small intentional

perturbations of input data types—for instance, slight modifications to sequences of Application

Programming Interface (API) calls or changes in resource usage metrics—that can result in models

misclassifying malicious samples as benign (Ambekar et al., 2024). Adversarial robustness is

crucial for safeguarding the integrity of AI systems, especially in high-stakes cybersecurity

contexts (Afifah & Stiawan, 2019). The extant methods that attempt to counter adversarial threats

include adversarial training, a technique that retrains a model on data altered in an adversarial

direction to make the model more robust, and defensive distillation that makes a model less

sensitive to small perturbations by refining its decision boundaries (Cui et al., 2019). Robustness

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3887

is also enhanced with hybrid frameworks that use combinations of static, dynamic, and behavior-

based features, increasing multiple layers of protection against evasion techniques (Venkatraman

et al., 2019). However, many contemporary models do not focus on adversarial robustness, which

places detection systems at risk of sophisticated attacks (Bhaskara et al., 2023). Tools like SHAP

and LIME can assist in identifying potential adversarial weaknesses by revealing features integral

to the model’s decision-making process (Charmet et al., 2022).

While there has been much advancement in behavior-based malware detection, there is still a

significant research gap, especially in explainability. Most of the proposed solutions have

interpretable frameworks (Lundberg et al., 2017), while deep learning models were considered

black boxes that cannot justify their predictions, thus questioning trust and usability (Kuppa et al.,

2020). SHAP or LIME are tools that have not been leveraged often; consequently, transparency is

hard to achieve (Chamola et al., 2023). Also, adversarial robustness has not been addressed

broadly, with only a few works covering adversarial training or performance analysis (Singh &

Singh, 2021). Likewise, temporal and process-state features, such as millisecond-level timing,

state transitions, and memory metrics, are also not being fully leveraged, thus limiting the ability

to capture dynamic system behaviors (Venkatraman et al., 2019) in entirety. This also hinders the

generalization in detection models (Naseer et al., 2021), along with a lack of multiple labeled data.

These gaps must be addressed to create strong, interpretable, and adversarially robust malware

detection systems (Bhaskara et al., 2023). To address these gaps, this study proposes an

explainable, adversarially robust detection framework using GRU and LSTM-based architectures

(Andrade et al., 2023).

3. Methodology

3.1 Dataset Description

This study uses a dataset from VirusTotal, a widely relied-upon malware analysis system, which

contains a rich feature set meant to capture the temporal, system-level, and behavioral attributes

of processes. It is a binary classification dataset of two classes: malware and benign. The features

fall into four broad categories to capture system and process behaviors more completely. These

metrics are temporal (timestamps in milliseconds) or system-related (prior, static_prio) metrics.

The state features give important context on what is happening with the processes (e.g., whether

they are running, sleeping, or being stopped) and can help identify malicious activity (Cui et al.,

2019). Another set of core features is memory statistics, detailing trends in resource usage often

leveraged by malware. For instance, metrics such as cached_hole_size, free_area_cache, and

task_size provide information about memory management that malware could abuse (Mpanti et

al., 2018). Page fault counters are measured together with nvcsw (walk-through context switches),

nivcsw (involuntary context switches), maj_flt (major page faults), and min_flt (minor page

faults), and they can provide insight into how often the system is being disrupted or distorted by

rogue malware (Ucci et al., 2018). Lastly, timing properties and features, such as time (user CPU

time), time (system CPU time), and time (thread executed time), provide a temporal view of

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3888

process behavior, which can help in the detection of subtle, rare abnormalities in resource

consumption (Kaya et al., 2024).

3.2 Data Preprocessing

Data pre-processing is an important step to ensure that the dataset's quality is good enough and

that the dataset is in a format that can be fed into a sequential deep-learning model (Sarna et al.,

2024). All numerical features have been normalized between 0 and 1 using MinMax scaling

(Namavar et al., 2020). The first normalization step was needed to account for differences in the

scales of the various features since the values of the inputs for the model training and convergence

processes needed to be as efficient as possible, specifically memory use, CPU times, and the

number of page faults. Data in the sets were segmented into three categories: training set,

validation set, and application set (Liras et al., 2021). The training set (just over 75 - 85% of the

data) was used to optimize model parameters, and the validation set was used to evaluate

performance during training and to tune hyperparameters (Guendouz et al., 2023). The test set

was not used until this final evaluation step to allow for an unbiased estimate of model

generalization ability (Wang et al., 2021). The data is temporally ordered, so sequences were

preserved in the train/test splits temporally.

3.3 Model Architectures

LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) networks are two of the

most common architectures of recurrent neural networks that can be applied to analyze sequential

data and were deployed in this study for malware detection. The reason we chose these two models

specifically was that they are both based on long short-term memory (LSTM), which has proven

effective in modeling long-term dependencies in temporal data, an important characteristic to

guarantee the detection of patterns in system behaviors and anomalous detection of any malicious

activity (Alaeiyan et al., 2023) refer to LSTM and GRU networks as indirect representations and

found that these networks use hidden states over time to process data organized as sequences.

LSTM models are particularly effective at modeling long-term dependencies thanks to their unique

gating mechanisms, which allow them to limit how much information is allowed through

(Manthena et al., 2023). The GRU architecture is arguably simpler, and GRU models with fewer

parameters have been shown to achieve competitive performance and are computationally cheaper

than the LSTM, which has no drop in accuracy (Galli et al., 2024).

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3889

Fig. 1: Illustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o are

the input, forget and output gates, respectively. c and c~ denote the memory cell and the

new memory cell content. (b) r and z are the reset and update gates, and h and h~ are

the activation and the candidate activation.(gabormelli)

Both architectures are suitable for sequentially related input features like system logs, resource

usage logs and process state (Kaya et al., 2024). The layered architecture of the models is

optimized for binary classification (Kolosnjaji et al., 2016). This first layer processed normalized

feature vectors for temporal and process-state metrics (Danilevsky et al., 2020).

Parameter LSTM GRU

Activator Sigmoid Sigmoid

Optimizer Adam Adam

Learning Rate
Default

(Adam)
Default (Adam)

Loss Function

Binary

Cross-

Entropy

Binary Cross-

Entropy

Layers 2 2

Neurons per

Layer

64 (1st

layer), 32

(2nd layer)

64 (1st layer), 32

(2nd layer)

Dropout Rate 0.2 0.2

Batch Size 32 32

Epochs 10 10

Patience for

Early Stopping
3 3

Table 1: Description of LTSM and GRU Architecture

To learn sequential dependencies, we used two recurrent layers: the first laid down 64 LSTM/GRU

units with return sequences set to true for the layers to continue looking for patterns after this (Galli

et al., 2024). In contrast, the second one contained 32 units to refine the patterns even more

(Kolosnjaji et al., 2016). To avoid overfitting, we introduced dropout layers with a value of 20%

https://www.gabormelli.com/RKB/LSTM
https://www.gabormelli.com/RKB/Gated_Recurrent_Unit
https://www.gabormelli.com/RKB/input
https://www.gabormelli.com/RKB/index.php?title=forget&action=edit&redlink=1
https://www.gabormelli.com/RKB/index.php?title=output_gate&action=edit&redlink=1
https://www.gabormelli.com/RKB/memory_cell
https://www.gabormelli.com/RKB/memory_cell
https://www.gabormelli.com/RKB/index.php?title=reset&action=edit&redlink=1
https://www.gabormelli.com/RKB/index.php?title=update_gate&action=edit&redlink=1
https://www.gabormelli.com/RKB/Activation_Function
https://www.gabormelli.com/RKB/Activation_Function

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3890

after each recurrent layer (Mane & Rao, 2021). The final dense layer used a sigmoid activation

function that gave the sample probability to be in a vibration or benign class (Namavar et al.,

2020). We used binary cross-entropy loss function for both models as it is the suggested loss

function for binary classification tasks. We used the Adam optimizer (Gupta et al., 2025), which

adapts the learning rate, allowing the model to converge more quickly and stably. Training was

stopped if the validation loss did not improve for three epochs (early stopping). Training consisted

of a maximum of 10 epochs, using a batch size of 32 to balance compute efficiency with

performance. This means that the data was reshaped to the sequential dimension, which will be

needed for all the models I am going to present so that every model architecture can expect its

input in that specific format. The approach included adversarial testing and retraining to strengthen

the LSTM and GRU models (Galli et al., 2024). Most of the generated adversarial samples are

perturbed samples based on a small offset of feature values, adding Gaussian noise while ensuring

they still look realistic. This method focused on important system behaviors, including memory

use, page faults, and CPU timings (Alaeiyan et al., 2023), to evaluate model sensitivity to

perturbations. The general dataset was then supplemented with these adversarial samples to

enhance the training set and model robustness (Ribeiro et al., 2016). Instead of directly exposing

the models to adversarial examples, the models were retrained with clean and adversarial data

(Kaya et al., 2024), learning to differentiate malware characteristics from noise. In order to

preserve transparency and ensure the model's reliability, explainability tools (Lundberg et al.,

2017) such as SHAP and LIME were employed.

Fig. 2: Methodological workflow of proposed malware detection system

SHAP gave a global map of feature significance reporting high-significance features like major

page faults (maj_flt), user CPU time (time), and process priority (prior) in malware detection

Input Data

Preprocessing

Recurrent Layer Adversarial Retraining

Interpretability (XAI)

Predict

Malware/Benig

n

Retrain

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3891

(Afifah & Stiawan, 2019). An example of local interpretations would be the LIME (Local

Interpretable Model-agnostic Explanations) algorithm, which perturbs specific input parts and fits

a simple model to explain specific predictions (Lundberg & Lee, 2017). Furthermore, the

framework maintained both global and local interpretability by integrating SHAP and LIME to

close the transparent versus performance gap in cybersecurity applications (Kuppa & Le-Khac,

2020).

4. Result Analysis

4.1 Model Performance

The performance of the LSTM and GRU models was evaluated using key metrics: accuracy,

precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC).

These metrics were analyzed under three scenarios: original data, adversarial data, and retrained

adversarial data.

Metric LSTM GRU

Accuracy 99.44% 99.92%

Precision 99.39% 99.92%

Recall 99.49% 99.93%

F1-Score 99.44% 99.92%

AUC-ROC 99.96% 99.99%

Table 2: Comparison of accuracy, precision, recall, F1-score between LTSM and GRU

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3892

Fig. 3: Accuracy comparison between LTSM and GRU

Both models achieved very good classification performance on the raw data. Figure 3 indicates

that the performance of the GRU with an accuracy of 99.92% slightly outperformed LSTM,

99.44%. Both models achieved AUC-ROC values greater than 0.99, demonstrating extreme

discrimination between malware and benign samples. GRU showed greater precision and recall

by producing the least false positive and false negative instances, which certifies that the models

could be successfully generalized with the clean datasets. Adversarial robustness plays a crucial

role in evaluating the reliability of AI models in cybersecurity by ensuring they are robust to

attempts to tamper and evade detection. This work focuses on adding especially noise into input

features in an adversarial testing method, e.g., effective va, reliable, effective memory usage, page

fault, timings of process, kernel and process states, etc. As can be seen from Figure 4, both models

performed worst on our dataset. GRU managed to retain 77.96% accuracy, while LSTM was

74.65%. Although this reduced accuracy, GRU showed better robustness overall, achieving higher

accuracy and recall than LSTM, demonstrating its capacity to detect malware in adversarial

environments. Our models both achieved an AUC-ROC above 0.85, indicating that our models

could still discriminate malware from benign examples under adversarial perturbation.

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3893

Fig. 4: Comparison of original and adversarial accuracy between LTSM and GRU

Fig. 5: Precision and recall comparison for both original and adversarial between LTSM and

GRU

Under adversarial test conditions, both models' precision and recall performance were severely

affected, meaning the ability of the models to classify the test samples correctly was significantly

reduced. If we discuss the LSTM model, as shown in Figure 5, the accuracy was 99.4 % for the

original and 85.4 % for the adversarial. Similarly, the initial recall of 99.5% of LSTM decreased

very quickly to 59.3% in adversarial conditions, accounting for more false negatives. GRU, on the

other hand, was less affected. Initially, the precision was 99.9%, adversarial precision dropped to

86.5%, and the model performed better than LSTM.

GRU also achieved better recall than LSTM, with GRU's original recall being 99.9% and

adversarial recall of 66.1%, suggesting that GRU is better at identifying malware after intended

perturbation. Both models saw a sharp drop in performance, with recall taking the biggest hit. In

contrast, GRU achieved consistently improved performance over LSTM when manipulating

adversarial data, achieving higher precision and recall; it appears GRU was the more stable

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3894

solution to the adversarial problem. The ROC curve further corroborated these findings and AUC

score analysis, demonstrating the clear degradability the models could provide for malware and

benign samples under both original and adversarial scenarios. Figure 6 shows that the AUC of

LSTM was 0.9996 without adversarial perturbations and decreased to 0.8556 with adversarial

perturbations. However, GRU retained an ideal AUC of 1.0000 on original data, decreasing

slightly to 0.8681 under adversarial conditions, indicating enhanced robustness. The performance

of either model was near perfect in original conditions on the task, with both attaining almost a

perfect AUC score. However, when evaluated on the adversarial ROC curves, the degradation was

visible, with GRU demonstrating noteworthy resilience over LSTM.

Adversarial retraining significantly improved the models' performance under adversarial

conditions. By incorporating adversarial samples into the training process, Figure 7 shows that

the GRU model achieved an accuracy of 92.61%, while LSTM slightly outperformed it with

92.69%. Enhanced recall and F1 scores highlighted the models' improved ability to reliably detect

malware in adversarial scenarios.

Fig. 6: ROC-AUC comparison between LTSM and GRU

Fig. 7: Comparison of adversarial retraining for LTSM and GRU

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3895

Figure 8 presents the testing accuracy for both models under original and modified adversarial

conditions. In the first figure (original performance), both models demonstrate strong performance

from the start, with GRU outperforming LSTM in the early epochs, converging faster, and

achieving nearly perfect accuracy (~99.9%) by the 10th epoch. Both models stabilize around the

seventh epoch, suggesting excellent capacity for behavior-based malware detection on the original

dataset. Both models show steady improvement in the second figure (modified adversarial

performance), with GRU maintaining a slight advantage throughout. GRU achieves a final

accuracy of 96.57%, slightly higher than LSTM’s 96.21%, reflecting its superior robustness to

adversarial conditions. Both models converge after the eighth epoch, demonstrating the

effectiveness of adversarial training in enhancing their resilience to adversarial manipulation. To

mitigate these vulnerabilities, adversarial retraining was conducted using a combined dataset of

original and adversarial samples.

Fig. 8: Comparison of LSTM and GRU models' accuracy over epochs for original and modified

adversarial data, highlighting GRU's superior performance.

As illustrated in Figure 9, both the retrained GRU (92.61%) and LSTM (92.69%) models realized

superior degrees of precision. Both models consistently outperformed others on recall and F1,

reinforcing their robustness to adversarial attacks. These results highlight the need for adversarial

retraining to enhance the robustness of malware detectors, ensuring that these systems perform as

intended in dangerous real-world environments.

Fig. 9: LTSM and GRU accuracy comparison

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3896

This will enable the existing models to generalize better to unseen perturbations and thus offer

protection against sophisticated evasion techniques now seen in some of the most advanced

malware variants. We can firmly assert that this assertive behavior is a strength in the adversarial

setup, which, whenever, bounds the performance reliability and effectiveness of the framework,

which serves as one of the prime criteria for any modern-day malware detection techniques.GRU's

consistency across all conditions, combined with its computational efficiency, makes it a strong

candidate for real-world, behavior-based malware detection.

4.2 Feature Importance Analysis for LSTM and GRU using Explainable AI (SHAP)

A behavior-based malware detection framework developed in this study relied on a feature

importance analysis using SHAP to better understand the data analysis results. This gave us a

global overview of the most influential features for the LSTM and GRU models, contributing to

interpretability and confirming the feature set. The LSTM model showed key features such as

major page fault (maj_flt), which indicates abnormal memory access patterns; user CPU time

(time), which reflects resource-intensive behavior of malware; static version (static_prio), which

signals system-level manipulation; and time delta (time delta) that aids identifying suspicious

behaviors, including zero-day threats. The distribution of importance of the features used in the

LSTM model is shown in the SHAP summary plot (Figure 10), further revealing the prominent

significance of the temporal and system-level metrics involved in accurate malware detection. As

with the LSTM model, the GRU model also highlighted key features — such as major page faults

(maj_flt), user CPU time (time), and static priority (static_prio) — as being significant in

classifying benign and malicious behaviors. The GRU model also used the memory users

(mm_users) feature, which gives an even more comprehensive description of the process behavior,

raising the model performance on both architectures. The SHAP summary plot for GRU (Figure

10) is consistent with LSTM as a reliable model consistent with temporal and process-state

features.

Fig. 10: LSTM (left) and GRU (right) SHAP Summary

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3897

The LSTM and GRU models deemed some of the same features important (maj_flt, time,

static_prio), yet the GRU had higher SHAP values for values related to memory use (e.g.,

mm_users) and resource allocation features, indicating its responsiveness to complex and subtle

behaviors. The disparity, along with the CRUB’s computational efficiency, makes GRU well

suited for real-time malware detection. In general, the analysis of feature importance using SHAP

indicates that the significance of features, such as maj_flt, time, and static_prio, in the behavior-

based malware detection scheme is inherent and remains unchanged, thus substantiating the

stability and credibility of the proposed architecture for high-impact cybersecurity applications.

4.3 Local Interpretability with Explainable AI (LIME) for LSTM and GRU

Local interpretability via LIME (Local Interpretable Model-Agnostic Explanations) enriches the

understanding of how each prediction of the LSTM and GRU models was derived, thus increasing

transparency and trust when risk is high, as with cybersecurity applications. For LIME, the

explanations are generated via perturbing input samples and determining how the model

predictions change. In a single instance studied for the LSTM model, a sample identified as

"malware" was predominantly characterized by an increase in major page faults (maj_flt),

indicating unusual behavior regarding memory usage, followed by an increase in the user CPU

time (utime) which suggested that the process performed intensive resource usage typical for

malware and deviations in the static priority (static_prio), which suggested manipulation of system

resources by apparitional software.

Fig. 12: LSTM LIME

In the LIME explanation, the bar chart in Figure 12 effectively shows how these features positively

contribute to classifying the sample as malware. For instance, it explained more than 40% of

prediction probability, followed by time, which explained about 25%. The greater granularity of

potential insights allows cybersecurity analysts to extrapolate specific model features that indicate

the rationale behind the model’s action and decide on further actions. A similar case study for the

GRU model highlighted the effectiveness of LIME in providing local interpretability. In this

instance, a sample classified as “malware” was primarily influenced by major page faults (maj_flt),

mirroring the LSTM model’s reliance on this feature. Additionally, the GRU model demonstrated

increased sensitivity to memory users (mm_users), capturing nuanced memory allocation patterns,

and flagged subtle irregularities in CPU timing (time_delta), emphasizing its ability to detect

temporal anomalies. This reinforces the GRU model’s proficiency in identifying complex

behaviors indicative of malware. The LIME explanation (Figure 13) visualizes features’ positive

and negative contributions. For example, maj_flt alone contributed more than 35% in malware

classification, while mm_users and time_delta contributed another large portion. Those discrete

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3898

classes provide action points for analysts to understand the behaviors that made the GRU model

perceive malware.

Fig. 13: GRU LIME

Despite the similarities, both models were focused on different features. The maj_flt and time

remained consistent across both models, but the GRU model placed a more significant emphasis

on anything related to memory usage, such as mg_users. This further emphasized its superior

capacity to generalize and see patterns across resource allocations. This difference stresses GRU’s

superiority in interpretability and robustness in behavior-based malware detection.

4.4 Comparison with Prior Work

Study Model

Accuracy

on Clean

Data (%)

Adversarial

Robustness

(%)

Explainability

(XAI Tools)
Feature Set

Proposed

Framework

(GRU)

GRU 99.92 92.61 SHAP, LIME

Temporal and

process-state

features (e.g.,

maj_flt, utime,

prio)

(Gupta et

al., 2025)
GRU 99.70% N/A None

Android malware

detection temporal

features

(Manthena

et al.,

2023)

SDEL 99.87% N/A
SHAP, LIME,

LRP

Pixel

representations of

malware binaries.

(Galli et

al., 2024)

LSTM,

GRU

99.43

(LSTM)
N/A

SHAP, LIME,

Attention, LRP

Behavioral API

call sequences

(e.g., API call

importance in

malware

prediction)

(Shakib,

2023)

GRU

(Geneti

cAI)

99.77 N/A None
Android malware

detection features

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3899

Zhang et

al. (2021)

CNN +

GAN
94.5 85.4 None

Malware images

generated by GAN

Venkatram

an et al.

(2019)

GRU +

CNN
97.5 85.2 None

API calls, system

events

Table 3: Comparison with existing work

This table highlights that the Proposed Framework (GRU) outperforms many existing methods,

particularly excelling in accuracy on clean data and demonstrating robust adversarial performance.

Unlike previous works, it integrates SHAP and LIME for explainability, ensuring transparency in

predictions and addressing the black-box nature of many deep learning models. Additionally, the

study leverages temporal and process-state features, which significantly enhance the detection of

both known and novel malware, surpassing traditional signature-based and handcrafted feature

methods.

5. Implications, Limitations and Future Work

Behavior-based malware detection architecture has a significant advantage in real-life security

systems owing to its wide applicability when combined with IDSs and EDSs to detect better

malicious behavior (Afifah & Stiawan, 2019). With behavior-based detection, unlike signature-

based systems, novel malware detection becomes a challenge. Based on real-time, behavior-driven

detection (Andrade et al., 2019), the framework minimizes malware damage and its explainability

with LIME and SHAP, which builds sufficient trust for in-the-wild deployment in high-risk

environments (Shakib, 2023). The GRU model is included to facilitate data processing (Galli et

al., 2024). However, some limitations are reliance on the VirusTotal dataset, which does not cover

all types of malware, and scalability issues with the increasing datasets that must be addressed.

Computational complexity (especially GRU and LSTM models have posed challenges using low-

resource devices). Future work should also focus on hybrid architectures combining GRU and

attention mechanisms to improve detection accuracy and adversarial testing to overcome more

sophisticated evasion strategies. Moreover, generalizes and strengthens the framework to react to

cybersecurity threats, thus increasing the diversity of the sources included in the dataset. So,

ongoing refinement and extension of the framework will eventually make it relevant to all

environments, thus enhancing the reliability of the framework in dynamic and real-world settings.

This continuous development will ensure it stays relevant and can combat new and more advanced

malware threats.

6. Conclusion

This study introduces a robust, explainable malware detection framework that integrates temporal

and process-state features with advanced GRU and LSTM models. The framework utilizes these

models to capture sequential dependencies and process system behaviors over time, significantly

improving malware detection over traditional approaches. In particular, the GRU model also gave

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3900

superior outperformance in adversarial situations, recording a 92.61% accuracy in adversarial

retraining, making it resilient against attacks. It is important in real-world cyber security systems

that the detection of evasive adversaries is accurate, and showing strong performance against these

adversarial attacks highlights the framework's utility. On the other hand, the integrated SHAP and

LIME interpretability tools give additional confidence and transparency with important global

features and explanations of local models. They allow cybersecurity practitioners to understand

how predictions are derived through a model, thus empowering confidence in employing AI-based

detection systems during critical times. Using SHAP, we aggregated features that filtered out

malware from benign processes, and significant features were identified as important (e.g., maj_flt,

time, and prior). Besides demonstrating the framework's flexibility, LIME has exposed the frame's

single predictions, which are also very important in tuning security protocols for improvement

and better opportunity prediction. Its potential to withstand adversarial manipulations while

maintaining high detection performance positions it as a promising solution for real-world, high-

risk malware detection and prevention applications.

8. References

Afifah, N., & Stiawan, D. (2019). The implementation of deep Neural Networks algorithm for

malware classification. Computer Engineering and Applications Journal, 8(3), 189–202.

https://doi.org/10.18495/comengapp.v8i3.294

Ahmed, M., Islam, S. R., Anwar, A., Moustafa, N., & Pathan, A. K. (2022). Explainable artificial

intelligence for cyber security. In Studies in computational intelligence.

https://doi.org/10.1007/978-3-030-96630-0-0

Alaeiyan, M., Parsa, S., & P., V. (2023). Sober: Explores for invasive behaviour of malware. In

Journal of Information Security and Applications (Vol. 74, p. 103451). Elsevier BV.

https://doi.org/10.1016/j.jisa.2023.103451

Ambekar, N., Devi, N.N., Thokchom, S. et al. (2024). TabLSTMNet: enhancing android malware

classification through integrated attention and explainable AI. Microsyst Technol.

https://doi.org/10.1007/s00542-024-05615-0

Amer, E., Zelinka, I., & El-Sappagh, S. (2021). A Multi-Perspective malware detection approach

through behavioral fusion of API call sequence. Computers & Security, 110, 102449.

https://doi.org/10.1016/j.cose.2021.102449

Andrade, E. O., et al. (2019). A model based on LSTM neural networks to identify five different

types of malware. Procedia Computer Science, 159, 182-191.

https://doi.org/10.1016/j.procs.2019.09.173

Bhaskara, A., Mitchell, F., Smith, P., & Kasera, S. K. (2023). Exploring Adversarial Attacks on

Learning-based Localization. ACM Digital Library, 15–20.

https://doi.org/10.1145/3586209.3591398

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3901

Chamola, V., Hassija, V., Sulthana, A. R., Ghosh, D., Dhingra, D., & Sikdar, B. (2023). A review

of Trustworthy and Explainable Artificial Intelligence (XAI). IEEE Access, 11, 78994–79015.

https://doi.org/10.1109/access.2023.3294569

Charmet, F., Tanuwidjaja, H. C., Ayoubi, S., Gimenez, P., Han, Y., Jmila, H., Blanc, G.,

Takahashi, T., & Zhang, Z. (2022). Explainable artificial intelligence for cybersecurity: a literature

survey. Annals of Telecommunications, 77(11–12), 789–812. https://doi.org/10.1007/s12243-

022-00926-7

Chen, L., Ye, Y., & Bourlai, T. (2017). Adversarial Machine Learning in Malware Detection:

Arms Race between Evasion Attack and Defense. 2017 European Intelligence and Security

Informatics Conference (EISIC), 99–106. https://doi.org/10.1109/eisic.2017.21

Cui, Z., Du, L., Wang, P., Cai, X., & Zhang, W. (2019). Malicious code detection based on CNNs

and multi-objective algorithm. Journal of Parallel and Distributed Computing, 129, 50–58.

https://doi.org/10.1016/j.jpdc.2019.03.010

Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., & Sen, P. (2020). A Survey of the

State of Explainable AI for Natural Language Processing. Proceedings of the 1st Conference of

the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th

International Joint Conference on Natural Language Processing, 447–459.

https://doi.org/10.18653/v1/2020.aacl-main.46

Finder, I., Sheetrit, E., & Nissim, N. (2022). Time-interval temporal patterns can beat and explain

the malware. Knowledge-Based Systems, 241, 108266.

https://doi.org/10.1016/j.knosys.2022.108266

Frontier - https://frontiere.io/insights/artificial-intelligence-for-businesses/how-explainable-ai-

can-help-overcome-mistrust-regarding-the-adoption-of-artificial-intelligence/

Gabormeli - https://www.gabormelli.com/RKB/Gated_Recurrent_Unit_%28GRU%29

Galli, A., La Gatta, V., Moscato, V., Postiglione, M., & Sperlì, G. (2024). Explainability in AI-

based behavioral malware detection systems. Computers & Security, 141, 103842.

https://doi.org/10.1016/j.cose.2024.103842

Gupta, B. B., Gaurav, A., Arya, V., Bansal, S., Attar, R. W., Alhomoud, A., & Psannis, K. (2025).

Earthworm Optimization Algorithm based Cascade LSTM-GRU model for Android Malware

Detection. Cyber Security and Applications, 100083. https://doi.org/10.1016/j.csa.2024.100083

Guendouz, M., & Amine, A. (2023). A new feature selection method based on Dragonfly

algorithm for Android malware detection using machine learning techniques. International Journal

of Information Security and Privacy, 17(1), 1–18. https://doi.org/10.4018/ijisp.319018

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3902

Kaya, Y., Chen, Y., Saha, S., Pierazzi, F., Cavallaro, L., Wagner, D., & Dumitras, T. (2024).

Demystifying Behavior-Based Malware Detection at Endpoints (Version 1). arXiv.

https://doi.org/10.48550/ARXIV.2405.06124

Kolosnjaji, B., Zarras, A., Webster, G., & Eckert, C. (2016). Deep learning for classification of

malware system call sequences. In Lecture notes in computer science (pp. 137–149).

https://doi.org/10.1007/978-3-319-50127-7_11

Kuppa, A., & Le-Khac, N. (2020). Black Box Attacks on Explainable Artificial Intelligence(XAI)

methods in Cyber Security. 2022 International Joint Conference on Neural Networks (IJCNN), 1–

8. https://doi.org/10.1109/ijcnn48605.2020.9206780

Liras, L. F. M., De Soto, A. R., & Prada, M. A. (2021). Feature analysis for data-driven APT-

related malware discrimination. Computers & Security, 104, 102202.

https://doi.org/10.1016/j.cose.2021.102202

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In

Advances in Neural Information Processing Systems (pp. 4765–4774).

https://doi.org/10.48550/arXiv.1705.07874

Malhotra, A. (2021). The postpandemic future of work. Journal of Management, 47(5), 1091–

1102. https://doi.org/10.1177/01492063211000435

Mane, S., & Rao, D. (2021). Explaining network intrusion detection system using explainable AI

framework. arXiv preprint arXiv:2103.07110. https://doi.org/10.48550/arXiv.2103.07110

Maniriho, P., Mahmood, A. N., & Chowdhury, M. J. M. (2024). A systematic literature review on

Windows malware detection: Techniques, research issues, and future directions. Journal of

Systems and Software, 209, 111921. https://doi.org/10.1016/j.jss.2023.111921

Manthena, H., Kimmel, J. C., Abdelsalam, M., & Gupta, M. (2023). Analyzing and explaining

Black-Box models for online malware detection. IEEE Access, 11, 25237–25252.

https://doi.org/10.1109/access.2023.3255176

Mehrban, A., & Ahadian, P. (2023). Malware Detection in IoT Systems using Machine Learning

Techniques. International Journal of Wireless & Mobile Networks, 15(6), 13–23.

https://doi.org/10.5121/ijwmn.2023.15602

Mpanti, A., Nikolopoulos, S. D., & Polenakis, I. (2018). Malicious software detection and

classification utilizing temporal-graphs of system-call group relations. arXiv preprint

arXiv:1812.10748. https://doi.org/10.48550/arXiv.1812.10748

Namavar, A., et al. (2020). Two-hidden layered extreme learning machine for IoT malware

detection. IEEE Internet of Things Journal, 7(5), 3995-4003.

https://doi.org/10.1109/JIOT.2020.2977345

1. NHM Hassan Imam Chowdhury,

2. Md. Ezharul Islam, 3. Md. Sunjid

Hasan, 4. Abdullah Al Mehedi

AI-Powered Behavior-Based Malware

Detection Using Advanced Temporal and

Process-State Features: A Robust Explainable

Framework.

Cuest.fisioter.2025.54(3):3883-3902 3903

Naseer, M., Rusdi, J. F., Shanono, N. M., Salam, S., Muslim, Z. B., Abu, N. A., & Abadi, I. (2021).

Malware Detection: Issues and challenges. Journal of Physics Conference Series, 1807(1), 012011.

https://doi.org/10.1088/1742-6596/1807/1/012011

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining the

predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (pp. 1135-1144).

https://doi.org/10.1145/2939672.2939778

Sarna, F. Z. & Chowdhury, N. H. I. (2024). Mediating Role of Brand Perception and Big Data

Analytics between Consumer Experiential Components and Consumer Behavior, International

Journal of Science and Business, 42(1), 193-211. DOI: https://doi.org/10.58970/IJSB.2492

Shakib, M. (2023). Android Malware Detection Approach’s Based on Genetic Ai, Cnn, Rnn, Lstm,

Gru, and Active Learning. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4611916

Singh, J., & Singh, J. (2021). A survey on machine learning-based malware detection in executable

files. Journal of Systems Architecture, 112, 101861. https://doi.org/10.1016/j.sysarc.2020.101861

Ucci, D., Aniello, L., & Baldoni, R. (2018). Survey of machine learning techniques for malware

analysis. Computers & Security. https://doi.org/10.1016/j.cose.2018.11.001

Venkatraman, S., Alazab, M., & Vinayakumar, R. (2019). A hybrid deep learning image-based

analysis for effective malware detection. Journal of Information Security and Applications, 47,

377–389. https://doi.org/10.1016/j.jisa.2019.06.006

VirusTotal : https://www.virustotal.com

Wang, Z., Fok, K. W., & Thing, V. L. (2021). Machine learning for encrypted malicious traffic

detection: Approaches, datasets and comparative study. Computers & Security, 113, 102542.

https://doi.org/10.1016/j.cose.2021.102542

Zhang, Z., Li, Y., Wang, W., Song, H., & Dong, H. (2022). Malware detection with dynamic

evolving graph convolutional networks. International Journal of Intelligent Systems, 37(10),

7261–7280. https://doi.org/10.1002/int.22880

