
 
 

Cuest.fisioter.2025.54(4):428-437                                                                                                                 428 

 

Articles     

Graph Attention Networks-Based Prediction of Micro RNA – mRNA Interactions in 

Oral Herpes Virus 

 

Sushma. B1, Dr. Karthik Raj2, Pradeep Kumar Yadalam*3 

1Final year BDS, Saveetha Dental College, Saveetha Institute of Medical and Technical 

Sciences, Saveetha University, Chennai - 600077 
2Assistant Professor, Saveetha Dental College, Saveetha Institute of Medical and Technical 

Sciences, Saveetha University, Chennai - 600077 
3Professor and Head of Research, Department of Periodontics, Saveetha Dental College, 

Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 

600077 

Corresponding Email id: pradeepkumar.sdc@saveetha.com 

 

Introduction: 

MicroRNAs (miRNAs) are small, non-coding RNA molecules that play crucial roles in 

regulating gene expression. They achieve this primarily by binding to complementary 

Abstract: 

Introduction: MicroRNAs regulate gene expression by binding to mRNAs, which results in mRNA 

degradation or translational repression. Understanding these interactions is crucial for elucidating 

disease mechanisms and developing therapeutic strategies. Computational methods predict these 

interactions, including machine learning, statistical analysis, and biological network modeling. 

However, biological validation is essential for physiological relevance. We aim to predict the 

interactions between microRNAs and mRNAs in oral herpes virus using graph attention networks. 

Methods: ViRBase, a database containing over 820,000 interactions between viral and cellular 

ncRNAs, is utilized to study the role of ncRNA in viral infections. The current version, ViRBase v3.0, 

includes more than 50,000 RNAs from 116 viruses and 36 host organisms. The database aims to 

enhance the understanding of viral infections and assist in developing new antiviral therapies. The 

study filtered for herpes virus families associated with oral infections, checked for duplicates and 

missing values in microRNA-mRNA interactions, and applied graph attention networks. Results: The 

model achieved a training accuracy of 94.15%, validation accuracy of 95.04%, and test accuracy of 

94.36%, indicating robust generalization capability. It performs well in the majority class (mRNA) 

due to the many available training samples. Moderate performance is observed in miRNA 

classification, highlighting the need for refinement and additional training data. However, the model 

struggles with the virus class due to low data representation, highlighting class imbalance. The Graph 

Attention Network (GAT) has a sparse network density, potentially affecting the model's ability to 

learn from underrepresented classes. Conclusion: The study investigates the intricate interactions 

between herpesvirus-encoded microRNAs and host mRNAs, revealing the molecular mechanisms 

behind herpesvirus infections. The model's 94.36% accuracy is hindered by dataset imbalance, 

suggesting the need for improved representation of minority classes and future work on dataset 

balancing and model architecture. 
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sequences on target messenger RNAs (mRNAs), leading to mRNA degradation or translational 

repression.(1). Understanding miRNA-mRNA interactions is vital for illuminating cellular 

processes, elucidating disease mechanisms, and developing new therapeutic strategies. Various 

computational methods have emerged to predict these interactions, leveraging advances in 

machine learning, statistical analysis, and biological network modeling.(2). 

MiRNA-mRNA interaction prediction involves sequence-based and context-based features, 

with sequence complementarity being a fundamental principle.(3,4). Tools like TargetScan and 

miRanda focus on sequence complementarity but lack other regulatory elements or biological 

context.(5). Predicting these interactions can help identify therapeutic targets, develop 

biomarkers, and understand viral evolution and resistance to antiviral therapies. Graph Neural 

Networks (GNNs) are useful for modeling complex interactions in complex systems, capturing 

the graph's local neighborhood features and global properties.(5–8). Machine learning models 

like support vector machines (SVMs) and deep learning architectures have gained popularity 

for predicting miRNA-mRNA interactions. Integrating multi-omics data presents an exciting 

frontier in predicting interactions, combining transcriptomic data with proteomic and 

metabolomic profiles.(9). However, biological validation of predicted interactions is crucial to 

determine their physiological relevance. Challenges include class imbalance and inherent 

biological variability among tissues, developmental stages, and disease states. Predicting 

miRNA-mRNA interactions is a dynamic and rapidly evolving field that combines 

computational biology, machine learning, and molecular biology. Improvements in prediction 

accuracy and biological relevance will provide deeper insights into gene regulation, offering 

pathways for therapeutic intervention in various diseases. As technology advances and more 

interactions are elucidated, this area of research holds immense promise for enhancing our 

understanding of the molecular underpinnings of life and disease.MicroRNA (miRNA) is 

crucial in gene regulation, affecting cell development and cancer progression. It targets 

multiple mRNAs, creating a complex network of interactions. Bioinformatics tools predict 

miRNA-target interactions.(6,7), but many face limitations(10).  

One Previous study explored the interaction between 6565 miRNAs and stroke-related genes, 

revealing that gene expression levels influence the association. Highly expressed genes are 

targeted by miR-619-5p and miR-5095, while clustered miRNA binding sites shorten mRNA, 

potentially aiding in stroke diagnostic markers.(10). A recent study showed that the microRNA 

prediction model accurately predicted interactions between similar miRNAs, outperforming 

other tools with AUC scores of 0.93 and 0.92(11,12)These studies have demonstrated good 

accuracy, but not for interactions involving herpes viruses. To our knowledge, no study predicts 

the interactions of microRNA and RNA of the herpes virus using graph neural networks. 

Therefore, we aim to predict the interactions of microRNA and mRNA in oral herpes virus 

using graph attention networks. 

Methods  

Dataset retrieval and preparation  

 Using ViRBase(13) is a resource that highlights the significant roles of n RNA in viral 

infections by documenting the interactions between viral and cellular ncRNAs. The current 

version, ViRBase v3.0, includes over 820,000 documented interactions, supported by 
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experimental and predicted evidence, involving more than 50,000 RNAs from 116 viruses and 

36 host organisms, primarily from families such as Flaviviridae, Polyomaviridae, 

Herpesviridae, Retroviridae, and Coronaviridae. This database aims to enhance the 

understanding of viral infections and aid in developing novel antiviral therapies. We filtered 

for herpes virus families involved in oral infections and checked for duplicates and missing 

values in micro rna-mrna interactions. The dataset contains Downloaded data from two 

files,microRNA_RNA_interactions, which were read into separate pandas data frames, with a 

new column named 'Source' added to each.  The study combined 'Interactor1 Symbol' and 

'Interactor2 Symbol' columns to create 'Fused_Feature,' 'Virus_Host_Feature,' 

'Category_Feature,' and 'Taxonomy_Score,' filtering Herpes viruses and saving results 

separately. These were assigned for nodes and nodes features and ‘score” as edge weight.  

Graph attention network architecture  

Graph Attention Network (GAT): Graph Attention Networks (GATs) are neural networks that 

use attention mechanisms to prioritize node features based on their connectivity, capturing 

nuanced relationships between nodes during feature aggregation. 

Architecture 

The architecture of this GAT model is designed to handle a graph with a feature space of 41,965 

different attributes, enabling it to process complex biological interactions related to miRNA, 

mRNA, and viral components. 

1. Input Layer:   

   The input layer accepts a feature vector comprising 41,965 individual features for each node 

in the graph, allowing for a detailed representation of the biological entities. 

2. First GAT Layer: 

   Hidden Channels: This layer features eight hidden channels. Each hidden channel is a 

feature representation that captures various aspects of the node information based on its 

connections in the graph. 

 Number of Attention Heads: This layer has eight attention heads. Each attention head operates 

independently, allowing the model to learn different relationships and representations in the 

graph simultaneously. This multi-head self-attention mechanism facilitates the capture of 

various interactions among neighboring nodes. 

   Dropout Rate: A dropout rate 0.6 is applied during training to promote model generalization. 

Dropout involves randomly setting a fraction of the units (in this case, 60% of the hidden units) 

to zero in each forward pass. This helps prevent overfitting by ensuring the model does not 

become overly reliant on any specific subset of features. 

3. Second GAT Layer: 

   Output Channels: This layer outputs three channels corresponding to the three target classes 

defined in the classification task, likely relating to different types of biological entities such as 

viruses, miRNAs, and mRNAs. Number of Attention Heads: There is one attention head in this 

layer. This choice simplifies the attention mechanism for the final output, directing the model's 

focus toward the most relevant interactions without the complexity of multi-head attention at 

this stage. Dropout Rate: A dropout rate of 0.6 is also used in this layer to help maintain 

robustness against overfitting by dropping a significant portion of the output features during 
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training. 

 Activation Functions 

Hidden Layer Activation Function: The Exponential Linear Unit (ELU) is the activation 

function for the hidden layer. ELUs introduce non-linearity into the model while maintaining 

a smooth gradient, which aids in training deep networks. They can enhance learning by 

addressing issues related to vanishing gradients, allowing for faster convergence. 

Output Layer Activation Function: The LogSoftmax function is applied in the output layer. 

This function combines the softmax operation, which converts raw output scores into 

probabilities across the defined classes, with the logarithm of those probabilities. LogSoftmax 

is particularly valuable for multi-class classification problems as it simplifies the computation 

of the negative log-likelihood loss used in training. 

Training Parameters 

1. Optimizer:   

   Adam: The Adam optimizer adjusts the learning rates of the model's parameters during 

training. It is favored for its efficiency in handling sparse gradients and dynamic learning rates. 

2. Learning Rate:   

   - Set to 0.005, which governs how the model is updated during training based on the 

computed error gradient. A learning rate that is too high may cause overshooting of minima, 

while a very low rate can result in slow convergence. 

3. Weight Decay:   

   5e-4: This parameter applies L2 regularization to the model's weights, penalizing large 

weights during optimization to help prevent overfitting. 

4. Number of Epochs:   

   - The model is trained for 100 epochs. An epoch refers to one complete pass through the 

entire training dataset, and multiple epochs are necessary to improve the model's performance 

iteratively. 

5. Loss Function:   

   - The model uses Negative Log-Likelihood Loss as the loss function. This function is well-

suited for classification tasks and measures how well the predicted probabilities align with the 

actual class labels. By minimizing this loss, the model learns to enhance its predictions on the 

training data. 

6. Training/Validation/Test Split:   

   - The data is divided into three subsets: 70% for training,15% for validation, and 15% for 

testing. This division ensures that the model is trained on most of the data while reserving 

portions for validation (to tune hyperparameters and prevent overfitting) and testing (to 

evaluate the final performance). 

The Graph Attention Network is a graph-based framework that models complex biological 

relationships. It uses attention mechanisms, a multi-layer architecture, and robust training 

parameters to classify interactions among miRNA, mRNA, and viral elements related to the 

herpes virus. The model's generalization to unseen data and attention to dropout rates enhance 

its effectiveness. 

Results  
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Dataset Characteristics: 

The herpes virus network comprises 41,965 biological entities, including mRNAs, miRNAs, 

proteins, transcription factors, and other RNA types. The network features many edges, 

indicating extensive interactions among these entities. Each node possesses unique 

characteristics, such as expression levels, functional annotations, interaction types, or structural 

properties. The test set includes 16 viral nodes, 543 miRNA molecules, and 5,737 mRNA 

molecules, reflecting a significant array of miRNAs potentially involved in regulating gene 

expression responses to herpes virus infection. The network density is 0.001866, which 

suggests selective regulatory mechanisms, with certain miRNAs targeting specific mRNAs. 

The average node degree is 78.30, implying that miRNAs likely target multiple mRNAs or 

influence many. These interactions are vital as they can modulate gene expression profiles in 

cells infected with the herpes virus, affecting viral replication and the cellular response to 

infection. The study uncovers a complex network of miRNA-mRNA interactions during herpes 

virus infection, highlighting the significant role of numerous miRNAs in regulating mRNA 

levels. The intricate nature of these interactions indicates that various miRNAs target multiple 

mRNAs, thereby controlling the host's responses. These interactions' low density and average 

degree suggest high specificity, resulting in nuanced regulation. Understanding these 

interactions could offer insights into therapeutic targets and biomarkers for herpes virus 

infection. Further analysis using bioinformatics tools is required. 

 Final Model Performance 

The model achieved an impressive overall accuracy of 94.36%, indicating that most predictions 

aligned with actual labels. It also achieved balanced accuracy at 46.13%, which is crucial in 

class imbalance scenarios. The Cohen's Kappa score of 0.5184 suggests moderate agreement 

between predicted and true classifications, accounting for chance agreements. However, there 

is room for improvement, particularly in the minority class, as the model's performance is still 

impressive. 

Class-wise Performance 

a) Virus Class:  

The model struggled significantly with the virus class, as the precision, recall, and F1-score 

metrics were all zero. This indicates that the model could not correctly classify any instances 

of the virus class, highlighting issues related to class imbalance and potential 

underrepresentation in the training data. 

b) miRNA Class: 

   The miRNA class model's performance was moderate, with high precision (0.9676) and low 

recall (0.38449). The F1 Score was 0.5507, indicating room for improvement in identifying 

miRNA correctly. The model supported 543 samples with a high F1 Score, indicating many 

misclassified or unidentified miRNA instances. 

c) mRNA Class: 

   - The model demonstrated high precision, recall, and an excellent F1-score in the mRNA 

class, supporting 5,737 samples. This performance highlights the model's effectiveness in 

environments where mRNA evidence is prevalent, as nearly all mRNA samples were correctly 

identified, highlighting its importance in biological classification. 
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 Training Dynamics 

The model demonstrated stable convergence throughout the training process, achieving a 

training accuracy of 94.15%, a validation accuracy of 95.04%, a test accuracy of 94.36%, and 

a final loss of 0.2720, indicating robust generalization capability. The model performs well on 

the majority class (mRNA) due to the many available training samples. Moderate performance 

is observed in miRNA classification, highlighting the need for refinement and additional 

training data. However, the model struggles significantly with the virus class, identifying 

minority classes due to low data representation. Class imbalance is a critical issue, especially 

in virus classification. 

The Graph Attention Network (GAT) has a sparse network density of 0.001866, an average 

node degree of 78.30 connections per node, and total edges of 1,642,866 interactions. This 

sparsity may affect the model's ability to learn from underrepresented classes. Despite its high 

accuracy in mRNA identification, the model's performance notably polarizes across different 

classes, revealing significant class imbalance and potential areas for refinement in training to 

capture minority classes better. Addressing these disparities is crucial for improving the model's 

applicability in biological contexts. 

 

Fig shows the tracking accuracy of a model over 200 epochs, starting at 91-92%. Improvements 

occur between epochs 75-100, with the best performance at 95-96%. After epoch 100, 

accuracies stabilize, with validation and test accuracies remaining close. The right graph shows 

a single red line tracking loss over 200 epochs, with initial high loss, sharp decrease during the 

first 25 epochs, gradual stabilization after epoch 50, and final loss around 0.3. This shows the 

expected learning curve pattern with rapid initial improvement followed by diminishing 

returns. 
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The plot displays ROC curves for viruses, miRNA, and mRNA, with a false positive rate (FPR) 

of 0.85 and a true positive rate (TPR) of 0.96 alongside a false positive rate (FPR) of 0.95. 

Furthermore, the plot shows PR curves for viruses, miRNA, and mRNA, along with their 

average precision (AP) values. Performance metrics for each category are included, paired with 

a heatmap that illustrates precision, recall, and F1-scores for viruses, miRNA, and mRNA. The 

normalized confusion matrix reveals that viruses are misclassified as mRNA 88% of the time 

and as miRNA 62%, while mRNA is correctly identified 100% of the time. 
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The line plot shows a rapid decrease in loss over epochs, stabilizing around 0.2 after 100 

epochs. A box plot shows the distribution of accuracies for training, validation, and test sets, 

with training accuracy having a wider range than validation and test accuracies. The histogram 

shows a distribution of loss values, primarily concentrated between 0.2 and 0.4, with a few 

outliers above 0.8. 

 

Discussion 

Herpesviruses, including HSV types 1, 2, and CMV(14,15), are enveloped DNA viruses that 

can cause lifelong infections. They regulate gene expression through microRNAs, small non-

coding RNAs that bind to target transcripts, resulting in mRNA degradation or inhibition. 

MiRNAs involve cellular differentiation, proliferation, apoptosis, and immune response 

regulation. Herpesviruses have two main roles in biology: virus-encoded miRNAs, which can 

deregulate host gene expression to facilitate viral replication and establish latency, and host 

miRNAs, which can target viral mRNAs or host factors that support viral replication(15,16). 

MiRNA-mRNA interactions involve target recognition, the consequences of binding, and the 

regulation of gene expression. Herpesvirus miRNAs can assist in infection by targeting host 

mRNAs critical for immune responses, promoting latency by suppressing lytic gene expression 

and influencing pathogen-host interactions. These interactions contribute to the complex 

interplay of forces during infection, with specific host miRNAs affecting viral replication and 

the severity of the infection. The relationship between viral miRNAs and host mRNAs further 

adds to the intricate interactions during infection. MiRNA-mRNA interactions are essential for 

understanding herpesvirus life cycles and their ability to manipulate host cellular functions. 
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Advances in computational tools such as TargetScan, miRanda, and RNAhybrid enable 

researchers to predict interactions. 

This study results achieved an impressive overall accuracy of 94.36%, with a balanced 

accuracy of 46.13%, which is crucial in class imbalance scenarios. However, there is room for 

improvement, especially within the minority class. The model struggled with the virus, 

miRNA, and mRNA classes, highlighting issues related to class imbalance and potential 

underrepresentation in the training data(fig-1,2,3). The Graph Attention Network (GAT) 

exhibits sparse network density, which may affect the model's ability to learn from 

underrepresented classes. Despite its high accuracy in identifying mRNA, the model's 

performance is inconsistent across different classes, exposing significant class imbalance and 

potential areas for refinement in training to capture minority classes better. Similar to previous 

studies, one study utilizes transfer learning techniques such as artificial neural networks and 

extreme gradient boosting to enhance miRNA-target interaction predictions in species with 

limited datasets. It introduces a novel method called TransferSHAP, which estimates the 

importance of features using tabular datasets. Another recent study proposes MIPDH.(4), a 

predictive tool for miRNA-mRNA interactions, employing DeepWalk and k-mer method 

features. It achieves an average accuracy of 75.85%, along with sensitivity, specificity, and 

AUC outcomes. Comparatively, it demonstrates superior performance and strong alignment 

with experimental data.(1,17,18). 

The study aims to improve the classification capabilities of a model for herpes virus infections 

by addressing class imbalances in the virus class.(19). Future research could incorporate 

synthetic data generation methods, such as Generative Adversarial Networks (GANs), to 

increase the representation of viral instances. Multi-omics data could be integrated to reveal 

comprehensive interaction networks and regulatory pathways. Feature representation could be 

refined to include time-series data reflecting dynamic interactions during different infection 

stages. Hyperparameter tuning and model architecture exploration could be pursued with 

robust strategies like grid search or Bayesian optimization.(6,7). Explainable AI techniques 

could be developed to provide insights into how predictions are made, enhancing 

interpretability and trust in model outputs. Experimental validation of predicted interactions 

could confirm the biological relevance of predicted interactions. The model could also be 

applied to related viruses to uncover conserved mechanisms across viruses, revealing potential 

evolutionary insights and common therapeutic targets. Transfer learning strategies could 

leverage other viral infection dataset data to improve the model's performance on herpes virus 

classification tasks. The study presents a model for understanding miRNA-mRNA interactions 

in herpes virus infection but has several limitations. The model's class imbalance, particularly 

within the virus class, affects its ability to generalize and accurately classify minority classes, 

leading to overfitting on majority classes. The sparse nature of the interaction network also 

limits the model's learning capacity. The small number of viral nodes in the test set reduces 

statistical power and introduces unpredictable variability in model performance.(12). 

Overfitting risks arise from the model's high accuracy scores on the majority classes, which 

can lead to overfitting on unseen data, particularly for minority classes. Biological variability, 

such as genetic diversity among viral strains or host-specific responses, can also affect the 



Graph Attention Networks-Based Prediction of Micro 
RNA – mRNA Interactions in Oral Herpes Virus 

Sushma. B1, Dr. Karthik Raj2, Pradeep 

Kumar Yadalam*3 

 

 
 
 
 
 

Cuest.fisioter.2025.54(4):428-437                                                                                                                 437 

 

reproducibility of findings across different biological contexts. Addressing these limitations 

and exploring future directions is essential for enhancing the accuracy and applicability of this 

work in therapeutic development and biological understanding. 

 

Conclusion  

The study explores the complex interactions between herpesvirus-encoded microRNAs and 

host mRNAs, revealing molecular mechanisms underlying herpesvirus infections. The model's 

accuracy is 94.36%, but it faces challenges due to class imbalance in the dataset. The Graph 

Attention Network approach may not fully capitalize on available data, highlighting the need 

for improved representation of minority classes. Future work should focus on balancing the 

dataset, optimizing model architecture, and incorporating additional features to improve 

predictions and insights into herpesvirus biology. 
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