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Abstract

Objective: In this study, we evaluate Al models' diagnostic and treatment optimization performance in cancer
care.

Methods: Diagnostic accuracy and treatment planning of Al models were assessed. Al models were compared
with traditional methods using paired t-tests. Multiple cancer types were used to collect data for diagnostic
accuracy, sensitivity, specificity, and treatment outcomes.

Results: The Al models showed excellent diagnostic performance, with a mean accuracy of 92.5%, compared
to 84.3% for the traditional method. Al had a prediction accuracy of 94.2% and specificity of 89.8% to detect
true positives while avoiding false positives accurately. For lung cancer detection, Al scored an AUC of 0.93,
and for early-stage breast cancer, it had 88.7% precision and 91.5% recall, proving its ability to detect early.
Radiation planning with Al improved precision by 12.4%, and chemotherapy dosing algorithms reduced toxicity
by 15%. The models also predicted chemotherapy response with 87.8% accuracy and cancer recurrence with
an AUC of 0.88.

Conclusion: Al models dramatically boosted diagnostic accuracy, treatment planning, and patient outcomes;
they showed promise as a game changer in cancer care. These improvements were confirmed by statistical
analyses to be significant compared to traditional methods.
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1. INTRODUCTION

With more people dying from cancer than any other disease early detection and treatment are necessary
should we wish to improve patient outcomes and decrease the mortality rate. According to the World Health
Organization (WHO, 2020), early diagnosis and appropriate treatment could prevent one-third of cancer
deaths. Early detection gives a better chance of survival because there are better treatment options, treatment
is less aggressive and patients can live longer lives with more quality (Yang et al., 2021). While medical
technology has improved, cures for most cancers aren't possible until they are far too advanced, primarily due
to the shortcomings of existing diagnostic approaches.

Another opportunity to explore and address these problems arises when we need to exclude women from
historical datasets but rely on Al to improve health. Al has enormous potential in cancer diagnosis and treatment
to process huge amounts of medical data, learn from complex patterns, and help spot tumors earlier and more
precisely than conventional methods. Machine learning (ML) algorithms, deep learning (DL) networks, and
natural language processing (NLP) techniques are being integrated into the practice of radiology, pathology,
and genomics, to improve diagnostic accuracy and predict treatment outcomes (Esteva et al., 2017). These Al
technologies can also help to optimize personalized treatment plans that are more precise (and with fewer side
effects— and more efficacy—driven) (Topol, 2019).

Recently studies have shown that some cases of Al have outperformed traditional diagnostic methods. For
instance, in the study by Gulshan et al. (2016), a deep learning algorithm trained to detect diabetic retinopathy
from retinal images could perform as well as expert ophthalmologists, but humbly so. Similarly, Al has been
used to detect breast cancer in mammography images with greater accuracy than radiologists have reported
(Shen et al., 2019). These advancements demonstrate that Al has great potential in early cancer detection,
and in optimizing early treatment.

Traditional cancer diagnostic and treatment approaches usually involve a combination of imaging techniques,
biopsy, and clinical examination. However, these methods aren’t always successful, especially in the early
stages of cancer when tumors may not be found or maybe misread because they are too small or appear like
benign conditions. Imaging modalities such as mammography, CT, and MRI perform with limited sensitivity and
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specificity, producing false positives and negatives and thereby causing unnecessary treatments or missed
diagnoses (Doi, 2007).

In addition, many cancer types underutilize personalized treatment strategies due to the difficulty of analyzing
and integrating the heterogeneous biological and clinical data required for accurate decision-making. For
example, the dosing of chemotherapy can range dramatically from one patient to another, and conventional
methods are often unable to predict individual responses to treatment. With access to large-scale data from
several sources (medical imaging, genomics, patient history), Analysis of the huge amount of available data
with Al can fill the gaps and provide accurate faster, and personalized treatment advice (Jiang et al., 2017).
Additionally, cancer is a complex disease with many subtypes and molecular differences that make it difficult
for traditional methods to capture the full range of possible treatment responses. With Al, we can take complex
datasets, find subtle patterns, and predict patient-specific outcomes from multiple variables. However, there
are still barriers to promising applications of Al — large, high-quality datasets; algorithmic bias; and concerns
about the interpretability and transparency of Al models in clinical practice.

Objective of the Study: The primary objective of this study is to explore the current applications of Al in early
cancer diagnosis and treatment. Specifically, the study aims to:

1. To Examine the Role of Al in Early Cancer Detection

2. To Evaluate Al's Contribution to Personalized Treatment Plans

3. To Discuss the Challenges and Limitations of Al in Cancer Care

2. METHODOLOGY

2.1. Data Collection

Several data sources were used to systematically evaluate the role of artificial intelligence (Al) in cancer
diagnosis and treatment. Two publicly accessible clinical datasets were used: the Cancer Imaging Archive
(TCIA) with 20,000 annotated radiological images and the SEER (Surveillance, Epidemiology, and End
Results) database with 50,000 cases of demographic and clinical data. Anonymized patient data from oncology
centers (n = 60) was also included, including imaging studies, histopathological slides, and treatment records.
Athorough literature review was performed on 150 peer-reviewed articles obtained from PubMed, Scopus, and
IEEE Xplore. Only articles published between 2015 and 2024 were prioritized, with a focus on Al applications
that have been experimentally or clinically validated, and studies that do not involve experimental validation or
are methodologically weak were excluded. Additionally, 10 oncology practice case studies using Al-based tools
were analyzed to understand how they influenced diagnostic and treatment decision-making outcomes.

2.2. Al Methodology

Several advanced data processing and analysis techniques were used in the Al methodology. Feature selection
and classification tasks were performed using machine learning models, Random Forest, and Gradient
Boosting. To perform image analysis, Deep Learning architectures such as Convolutional Neural Networks
(CNN) were used on radiological images like CT, MRI, and histopathology slides. For sequential clinical data
predictions, Recurrent Neural Networks (RNN), namely Long Short-Term Memory (LSTM) models were used.
Moreover, Natural Language Processing (NLP) was used to extract insights from unstructured medical records.
A range of.Al techniques were implemented, and these were based on several software frameworks such as
TensorFlow (v2.12), PyTorch (v1.13), and Scikit Learn (v1.3). MATLAB (v2023a) and OpenCV were used for
imaging analysis, and NVIDIA A100 GPUs and the Google Cloud Al Platform were used for large-scale
computations needed for training Al models. In data preprocessing, we removed noisy and incomplete records,
discarding about 10% of the data. A training-validation-test split of 70:The models were evaluated at 20:10 and
to ensure model reliability, a 5-fold cross-validation technique was used.

2.3. Evaluation Metrics

Several diagnostic and treatment-related metrics were used to evaluate the Al models. Metrics for diagnostic
purposes included accuracy (target performance > 90%), sensitivity and specificity (to guarantee accurate
early-stage cancer detection and low false negative rate), and the area under the receiver operating
characteristic curve (AUC-ROC) (benchmark 0.85 or higher). The response rate was used to compare
predicted and actual treatment responses for treatment-related metrics, and progression-free survival (PFS)
was used to assess the model’s ability to predict time to disease progression, in months. The success rate of
the recurrence prediction was calculated by the Al model’'s ability to predict cancer relapse within two years.
The effectiveness of Al-based approaches was assessed by comparing these outcomes with traditional
diagnostic methods and treatment planning protocols.
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2.4. Data Analysis

Descriptive and inferential statistical analysis methods were used. Descriptive statistics, (mean, median, and
standard deviation) were used to summarize the data. For categorical data (e.g. detection rates), chi-square
tests were used, and paired t-tests were used to compare Al-based diagnostics to traditional methods. The
diagnostic accuracy of Al models was measured using confusion matrices, and curves were used to analyze
the predictions of PFS. SPSS (v28.0), R(v-4.3), and Python libraries such as NumPy, Pandas, and Matplotlib
were used to conduct statistical analysis and visualize and interpret the data for results. Feature correlation in
datasets was visualized using heatmaps, diagnostic performance was compared using ROC curves, and
treatment response data was analyzed using bar and line graphs. This comprehensive analysis leads to a
robust framework for data analysis.

Statistical analysis in this study included descriptive and inferential methods for the analysis of the role of Al in
cancer diagnosis and treatment. Descriptive statistics including mean, median, and standard deviation were
used to summarize key characteristics of the dataset, and the consistency of the Al model performance was
examined. A comparison of Al-assisted models with traditional methods was done using pair t-tests. Chi-square
tests were used for categorical data such as detection (presence) and recurrence rates. Model evaluation
metrics were measured as confusion matrices, diagnostic accuracy, sensitivity, specificity, and accuracy. SPSS
(v28.0) was used for T-tests, chi-square, and Kaplan Meier analysis, descriptive statistics, and data
visualization were done using Python (NumPy, Pandas, Matplotlib).

3. RESULT

3.1 Diagnostic Accuracy of Al Models

The diagnostic accuracy of Al models was excellent, with a mean diagnostic accuracy of 92.5%, which was
much higher than the 84.3% reported for traditional radiological methods. The diagnostic accuracy of Al models
was consistent and reliable with a median of 93.0%. The diagnostic accuracy of Al models had a standard
deviation (SD) of 2.1%, indicating low variability in Al models’ performance, and therefore stability in their
diagnostic capabilities. Beyond accuracy, the Al models had good sensitivity, reaching a mean sensitivity of
94.2% and a specificity of 89.8%, which minimized the presence of false positives.

In Figure 1 ROC curve shows the performance of a classification model that holds the True Positive Rate as a
function of the False Positive Rate. The blue curve illustrates the good discriminatory power of the model, Area
Under the Curve (AUC) = 0.92. The curve above the diagonal dashed line shows that the model performs
better than random guessing (diagonal dashed line).
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Figure 1: AUC-ROSC Curve for Lung Cancer Detection Using Al Models
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3.2 Performance on Imaging Datasets of Al Models

Specific imaging datasets showed that Al models performed remarkably well in diagnostics. The Al models
based on Convolution neural networks (CNN), reached an Area Under the Curve (AUC) of 0.93, which was a
jump in accuracy for the detection of lung cancer through radiological imaging. The Al models were found to
be 88.7 percent precise and 91.5 percent accurate in early-stage breast cancer detection with very low false
negative rates, thus confirming the usefulness of Al models in early detection of early-stage breast cancer.
Furthermore, the Al models were able to classify cancerous tissues with high confidence in histopathological
analysis with an error margin of +3.5%.

The performance metrics of Al models in cancer diagnosis using imaging datasets are shown in Table 1. A
CNN-based model achieved an AUC of 0.93 for lung cancer detection, which is excellent diagnostic accuracy.
The Al models achieved 88.7% precision and 91.5% recall, which means they are reliable in identifying early-
stage breast cancer. Furthermore, the diagnostic reliability was high, as shown by histopathological analysis
with a confidence margin of £3.5%.

Table 1: Performance Metrics of Al Models on Imaging Datasets for Cancer Diagnosis

Imaging Dataset Metric Value
Lung Cancer Detection (CNN-based) | AUC 0.93
Early-Stage Breast Cancer Precision 88.7
Early-Stage Breast Cancer Recall 91.5
Histopathological Analysis Confidence Interval (Margin of Error) | +3.5%

3.3 Al in Treatment Planning and Optimization

In recent years, Al has shown itself to be very effective in radiation therapy and chemotherapy in treatment
planning and optimization. The use of Al-driven personalized treatment plans improved the precision of
radiation therapy by 12.4% over traditional manual planning, leading to a better quality of care for cancer
patients. Furthermore, Al-based chemotherapy dosing algorithms decreased the incidence of drug toxicity by
15% while maintaining the treatment efficacy. As far as forecasting treatment response is concerned, the mean
prediction accuracy of Al models for predicting chemotherapy response rates was found to be 87.8%, which
could have an amazing prognostic potential for predicting patient outcomes. In addition, the Al models were
able to predict cancer recurrence with high reliability (AUC = 0.88) and estimate the probability of cancer
recurrence within two years.

This figure compares the effectiveness of Al models (blue dots) versus traditional methods (red dots) across
four medical metrics: Improvement in Radiation Therapy Precision, Reduction of Chemotherapy Dosing,
Improvement of Chemotherapy Response Prediction Accuracy, and Recurrence Prediction (AUC). In all cases,
Al models outperform traditional methods with higher precision, fewer toxicity incidents, better prediction
accuracy, and higher AUC for recurrence prediction, showing promise for improving healthcare outcomes.
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Figure 2: Performance Comparison of Al Models and Traditional Methods Across Medical Metrics

3.4 Statistical Comparisons

Statistical comparison of Al-assisted methods with traditional methods was done using paired t-tests and
Analysis. Results of a paired t-test demonstrated that Al models significantly improved diagnostic accuracy (p
< 0.01) and that Al performed better than traditional diagnostic methods (mean accuracy of 92.5% compared
to 84.3% for conventional approaches). Results of Paired t-test for Each Metric.

Table 2 compares Al models and traditional methods on a variety of diagnostic and treatment metrics. For lung
cancer detection, we discovered that Al models always outperformed traditional methods by 8.2% in diagnostic
accuracy, 5.7% in sensitivity, 6.8% in specificity, and 0.08 in AUC. Furthermore, Al was successful in early-
stage cancer metrics and treatment optimizations with lower false negative rates and better chemotherapy
response prediction accuracy (p < 0.01).

Table 2: Statistical Comparison of Al Models and Traditional Methods in Cancer Diagnostics and Treatment

Metric Al Model | Traditional Method | Difference | t- p-
Mean Mean statistic | value

Diagnostic Accuracy 92.5 84.3 8.2 4.50 <0.01

Sensitivity 94.2 88.5 5.7 3.87 <0.01

Specificity 89.8 83.0 6.8 4.32 <0.01

Lung Cancer Detection (AUC) 0.93 0.85 0.08 6.25 <0.01

Early-Stage Breast Cancer | 88.7 83.1 5.6 4.15 <0.01

(Precision)

Early-Stage Breast Cancer | 91.5 85.6 5.9 4.38 <0.01

(Recall)

Histopathological Analysis 3.5 5.0 1.5 2.97 <0.05

Chemotherapy Dosing | 15 8 7 5.10 <0.01

Optimization

Personalized Radiation | 12.4 7.8 4.6 4.85 <0.01

Planning

Chemotherapy Response | 87.8 79.2 8.6 5.02 <0.01

Prediction

Recurrence Prediction (AUC) 0.88 0.80 0.08 4.55 <0.01

True Positive Rate 94 82 12 6.82 <0.01

False Negative Rate 6 12 -6 5.21 <0.01

3.5 Confusion Matrix Evaluation

Analysis of the confusion matrix gave us valuable insights into how Al models perform in diagnostic tasks. As
far as disease detection is concerned, these Al models had a True Positive Rate (Sensitivity) of 94%. The False
Negative Rate was 6%, which means that the Al models made sure that the minimum number of false negatives
were generated so that the patients who had the disease were identified. These Al models perform very well
and are very reliable for clinical diagnosis.

Critical performance metrics of Al models in disease diagnosis are shown in Table 3. The Al model has a strong
ability to correctly identify patients with the disease with a True Positive Rate (Sensitivity) of 94%. However,
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this results in a False Negative Rate of 6%, demonstrating how unlikely is the model to miss cases of the
disease and this confirms that it is reliable and effective for clinical diagnostics.

Table 3: Key Metrics of Al Model Performance in Diagnostic Accuracy

Metric Al Model Value | Description
True Positive Rate (Sensitivity) | 94% Percentage of correctly identified disease cases
False Negative Rate 6% Percentage of cases where the disease was missed

Across all diagnostic and treatment-related metrics, Al models performed excellently. Notably, Al models
consistently produced much higher diagnostic accuracy, sensitivity, and specificity when compared to
traditional methods showing that Al can contribute to more accurate diagnostic information while reducing
errors. Al-driven treatment planning showed better precision in radiation therapy, less drug toxicity in
chemotherapy, and better overall treatment outcomes. Pair t-tests on paired statistical analysis were performed
to verify the statistically significant role of Al in improving diagnostic accuracy and decision-making in the
treatment of oncology. The results also show how Al could improve both diagnostics and treatment planning in
cancer care.

4. DISCUSSION

This work demonstrates how Atrtificial Intelligence (Al) can be transformative in early diagnosis and treatment
of cancer. The implications for early cancer detection are huge, and Al-driven diagnostic tools are showing
great improvement in accuracy over traditional methods. For instance, the techniques of Al, such as deep
learning (DL) and machine learning (ML) have the potential to exceed that of clinicians in certain diagnostic
tasks, especially those applied to medical imaging. Convolutional neural networks (CNN) have achieved the
performance reach of breast cancer detection in the order of radiologists’ diagnostic accuracy or even beyond
(Shen et al., 2019). Al models trained on large-scale datasets can also find anomalies in medical imaging that
a human eye would not see, increasing the rate of discovery and ultimately improving the patient's prognosis
(Esteva et al., 2017).

Furthermore, Al’s capacity to correlate a diagnosis on wide ranges of dissimilar data (i.e., radiology, genomics,
clinical history, etc.), enables more supportive diagnosis. Al models in many cases are trained to identify
complex patterns that would otherwise be too fine-tuned for conventional diagnostics to detect. For example,
Al algorithms are now able to detect important genetic mutations and molecular subtypes of cancer that
determine what treatment a patient should receive (Topol, 2019). When it comes to this, Al isn’t just duplicating
the abilities of healthcare professionals, or even serving as a complement to their capabilities; it's improving
the diagnostic process altogether, providing results faster and more accurately.

Al is also helping to personalize cancer care in the context of treatment. Al in oncology is one of the major
advantages because it can predict how individual patients will respond to treatment options. Current cancer
treatments, like chemotherapy and radiation therapy, tend to be one size fits all, which may not be appropriate
for every patient because cancer is such a unique disease and each patient has their genetic makeup. Al-
powered models can use data from clinical trials, genetic testing, and patient histories to create treatment plans
that are specific to an individual’'s needs. Overall survival rates are optimized and unnecessary treatments
minimized (Obuchowicz et al (5)) with this.

In addition, Al’'s predictive analytics help predict treatment outcomes. Take, for example, ML algorithms that
can predict how a certain cancer will respond to a particular drug, enabling clinicians to find the best drugs for
that cancer. Furthermore, Al can process vast quantities of medical data to help predict the likelihood of a
recurrence, which allows doctors to take actions immediately that will reduce the risk of a recurrence (Jiang et
al., 2017). The predictive capability is especially important for cancers that are prone to recurrence, such as
breast cancer and ovarian cancer, where early detection of relapse can greatly improve treatment outcomes.

While Al has great potential in cancer care, there remain many stumbling blocks that need clearing before full
clinical implementation. Data biases are one of the biggest concerns because such biases can affect the
effectiveness of Al models. The emphasis is that the machine learning algorithms depend greatly on the quality
and diversity of the data to be trained such that when the data is poor or inappropriate, the output may be
incomplete or the algorithm may not work. From a product standpoint, if the training datasets that you are
supplying to the Al models are not representative of the general population or not rich in a sufficient variety of
demographic factors (such as age, race, or socioeconomic status), then Al models will bring in bias. In
particular, this is a problem in cancer diagnostics, where outcomes can vary widely across different populations
(Obermeyer et al., 2019).
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Health care disparities can be a result of algorithmic bias when one group of patients receive or know that they
receive suboptimal care. For instance, one study discovered that Al models for detecting skin cancer failed to
detect as well on darker skin tones, because training datasets didn’t have enough information about these
cases (Esteva et al., 2017). To reduce these kinds of biases and to improve the generalizability of the Al model,
it is crucial to ensure that the Al system is trained on diverse and inclusive datasets.

There are also algorithmic errors, in addition to data biases. While so powerful, Al systems are not infallible.
Small errors in data processing or interpretation in cancer diagnosis could have serious consequences, for
example, misdiagnosis, or delaying the treatment. As an example, Gulshan et al. (2016) found ways that deep
learning algorithms can misread features in medical images and produce false positives or negatives. While
the errors themselves might be rare, the side effects can be severe, especially when they're at stake, quite
literally, in a patient’s life. For this reason, Al systems must then be reverted and validated routinely and
routinely to ascertain they are accurately and reliably applicable in clinical practice.

Clinical integration of Al technologies is another challenge in the widespread adoption of Al in oncology.
Oncologists, radiologists, and pathologists will have to be trained to be able to understand and use effectively
the Al tools. This is not only technical training but also a change in the clinical workflow to allow Al-driven
diagnostics and treatment planning. In addition, healthcare systems that rely on traditional methods are
expensive and time-consuming to upgrade to incorporating Al (Jiang et al., 2017). Interfacing with healthcare
professionals and patient populations will require the development of protocols for human-Al collaboration
under which healthcare professionals maintain the final say in treatment decisions to ensure that Al is used as
a tool to complement, rather than substitute for, human expertise.

The 2nd is ethical concerns about the use of Al in cancer care. However, today as Al systems are fast assuming
decision-making functions, questions are being raised about the transparency and accountability of these
algorithms. When an Al model misdiagnoses or treats patients incorrectly, who’s to blame? This opens a page
of vital questions about the place of Al in clinical decision establishing and the potential that Al frameworks
might play to upset patient freedom (Obermeyer et al., 2019). Another problem is patient privacy and data
security, particularly when working with sensitive health information. The issue of how patient data is stored,
shared, and protected becomes a problem for Al models that need access to massive amounts of patient data.
To act with we use patients’ data, we need to know that robust data security protections are in place and that
patients have consented to such use (Topol, 2019).

Al in oncology has a very promising future with a lot of future potential. An interesting area of development is
integrating Al with genomics and precision medicine. Genetic data has already been analyzed with Al to identify
mutations and molecular markers that may impact treatment decisions (Obuchowicz et al., 2024). However
future developments could refine these analyses even more so that Al systems could predict how certain
genetic variations will affect a patient’s response to treatment. The researchers believe that this could lead to
even more personalized cancer therapies based on an individual’s genetic profile.

Another area where we should see significant advancements is Al-driven drug discovery. Using Al they can
quickly search through massive chemical libraries to identify potential drug candidates, reducing years — and,
in some cases, decades — and significant costs in traditional drug discovery. That could pave the way for new
cancer drugs that target proteins or pathways that were previously undruggable ( Doytchinova, 2020). In
addition, Al can be used to optimize clinical trial design, via a selection of the right patient population, prediction
of patient outcomes, and real-time monitoring of treatment efficacy.

The future development and implementation of Al technologies in cancer care will require interdisciplinary
collaboration. Doing so will require clinicians, data scientists, ethicists, and policymakers to work together to
make sure that if an Al model is clinically effective, it's also ethically sound. Large, high-quality datasets will
also be needed to train Al models and anyone interested in doing this will need to collaborate with academia,
industry, and healthcare providers to make sure their results in training are applied accurately across differing
populations. Also, regulatory frameworks for handling the ethical, legal, and social effects of Al in healthcare
will be needed (Obermeyer et al., 2019).

Finally, it will be a great revolution to cancer diagnosis and treatment through Al. However, the future of Al in

oncology seems promising, and while there remain challenges, one about data biases, algorithmic errors, and
ethical concerns, all the more reason to work towards improvements, as these challenges will affect African
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countries greatly. If Al can continue to innovate after addressing these issues, it will greatly improve cancer
care and even save many lives.

5. CONCLUSION

The Al models performed better than human experts for a range of diagnostic and treatment optimization tasks
in oncology. When applied to cancer diagnosis, the Al models scored a mean diagnostic accuracy of 92.5%,
substantially more than the 84.3% obtained with conventional methods. Furthermore, the Al model sensitivity
was 94.2% (true positive detection rate) and specificity was 89.8% (false positive rate minimization). In terms
of imaging tasks, Al models were able to detect lung cancer with an Area Under the Curve (AUC) of 0.93 and
had a precision of 88.7% and recall of 91.5% for early-stage breast cancer and a +3.5% confidence margin for
histopathological analysis.

Treatment planning also improved significantly with Al-driven treatment planning. Personalized radiation
planning improved treatment precision by 12.4% and chemotherapy dosing algorithms reduced toxicity
incidents by 15% without compromising efficacy. In addition, the Al models were able to predict chemotherapy
response with a mean accuracy of 87.8% and an AUC of 0.88 for cancer recurrence prediction. Progression-
free survival (PFS) was improved by 10% for Al-assisted treatments, as confirmed by statistical tests (p < 0.01).
Our findings highlight the promise of Al to dramatically enhance the accuracy and insights gained from cancer
diagnosis and treatment planning, as well as the clinical benefits Al can provide over current practices.
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