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1. Introduction  

 

As cloud computing continues to evolve, ensuring strong data security remains a critical 

challenge. Traditional security methods often fall short against emerging threats such as data 

breaches and unauthorized access. Advancements in encryption, access control, and AI-driven 

anomaly detection have enhanced cloud security, improving data confidentiality and integrity. 

Implementing multi-layered security frameworks and compliance-driven strategies strengthens 

protection against cyber threats. This paper examines innovative approaches to securing cloud 

environments, addressing key vulnerabilities, and optimizing data protection measures [1]. 

 

This research explores a QFHE a cryptographic framework designed to perform secure 

computations on encrypted data while remaining resistant to quantum adversaries. By leveraging 

lattice-based cryptography, specifically Module-LWE and Ring-LWE, QFHE ensures robust 

security against quantum attacks while enabling efficient homomorphic operations. Unlike 

conventional Fully Homomorphic Encryption (FHE), which relies on classical hardness 
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assumptions, QFHE incorporates post-quantum cryptographic techniques to future-proof cloud 

data security. 

 

 
Fig.1. General Data encryption system architecture 

 

Figure 1 illustrates a cloud security framework where users interact with encrypted data using 

quantum-resistant encryption and decryption. The proposed QFHE algorithm leverages lattice-

based cryptography, ensuring efficiency and resilience against quantum attacks. By integrating 

post-quantum techniques like Module-LWE and Ring-LWE, QFHE enables secure computations 

on encrypted data without exposure to threats. This approach strengthens cloud security, 

allowing enterprises to adopt cloud computing while mitigating risks from both classical and 

quantum adversaries. 

 

2. Literature Review  

 

Ameur, Y., Bouzefrane, S., & Thinh, L. V. (2023) further discuss the security aspect, stating that 

current encryption algorithms are efficient but resource-intensive, making them costly and time-

consuming to manage. Moreover, traditional encryption methods make it impossible to process 

data without first decrypting it. Specifically, conventional public-key encryption requires data to 

be decrypted before it can be analyzed or manipulated. In contrast, homomorphic encryption 

allows data to remain encrypted while being processed, enabling users or third parties, such as 

cloud providers, to perform operations on encrypted data without revealing its contents. the high 

performance and robust data processing capabilities of cloud computing, externalizing data to 

cloud platforms has become an inevitable trend in the digital landscape today. However, 

ensuring the security and privacy of data remains a significant challenge. To address this 

concern, a multi-cloud platform is proposed to enhance both privacy and high availability of 

data. This multi-cloud platform integrates public, private, and managed clouds through a unified 

user interface. Data hosted on the cloud is distributed across various data centers within the 

multi-cloud environment, based on cloud reliability and the sensitivity of the data [2]. 

 

P. Ora and P. R. Pal addressees this issue by combining RSA Partial Homomorphic encryption 

with MD5 hashing. RSA Partial Homomorphic encryption allows cloud servers to perform 

computations on encrypted data without decrypting it, ensuring confidentiality. MD5 hashing, on 

the other hand, is used to verify data integrity by generating a unique hash of the encrypted data. 

The approach involves encryption, data uploading, hashing, and verification, ensuring that data 

remains secure and unaltered [3]. Tang et al. (2025) proposed a Threshold Quantum 



Advancing Data Security in Cloud Computing: A 
Comprehensive Exploration of Quantum-Secure Variant 
of Fully Homomorphic Encryption Technique 

Dr. I. Carol, 
 

 

 

 

 

 
 
 
 

Cuest.fisioter.2025.54(3):2825-2844 2827 

 

Homomorphic Encryption (TQHE) scheme, based on the Shamir secret sharing protocol, which 

enables multiple evaluators (ranging from 3 to 5) to collaboratively perform computations on 

encrypted quantum data. This scheme allows each evaluator to carry out arbitrary single-qubit 

gate operations on the encrypted data while maintaining the overall security of the system. A key 

contribution of this work is the flexibility of the scheme, as it enables multiple evaluators with 

independent quantum computing resources to jointly evaluate encrypted quantum data. This 

opens up the possibility for more complex and scalable computations on quantum networks 

compared to single-evaluator systems. The authors provide a specific example using a (3, 5)-

threshold configuration, demonstrating the feasibility and correctness of the approach through 

simulations on the IBM quantum computing cloud platform.The security of the proposed scheme 

is rigorously analyzed, covering aspects such as encryption/decryption private keys, quantum 

state sequences during transmission, and the final computation results. This thorough analysis 

ensures that the proposed TQHE scheme maintains the confidentiality and integrity of quantum 

data while enabling flexible collaborative computations [4].  

 

Hamza et al., (2022), the authors provide an overview of FHE algorithms applied to Big Data. 

They present a security framework for Big Data analysis, integrating HE to ensure privacy 

during computation. The paper compares various homomorphic encryption tools, evaluating their 

performance in terms of scalability, efficiency, and resource usage. The authors highlight trade-

offs between security and computational cost when choosing HE techniques for Big Data 

applications. The study also identifies key research challenges and future opportunities for 

optimizing HE algorithms, particularly in integrating privacy-preserving techniques with 

machine learning for enhanced Big Data processing. This work sheds light on the potential of HE 

for secure Big Data analytics, offering practical insights into its use and challenges [5]. 

 

Kim and Yun (2021) proposed a new security notion for homomorphic authenticated encryption, 

which unifies data privacy and authenticity in a simpler and stronger way than previous 

definitions. The paper presents the first construction of fully homomorphic authenticated 

encryption, combining fully homomorphic encryption with two homomorphic authenticators one 

fully homomorphic and one OR-homomorphic. This construction ensures the security of data 

privacy and authenticity, requiring the encryption to be indistinguishable under chosen plaintext 

attacks and the authenticators to be unforgeable under selectively chosen plaintext queries. 

Additionally, the authors propose a multi-dataset fully homomorphic authenticator scheme, 

which enhances efficiency by supporting amortized performance and satisfying security 

requirements. This work advances the field by providing a robust construction for fully 

homomorphic authenticated encryption, addressing both security and efficiency concerns in 

homomorphic computations on multiple datasets [6]. 

 

Brakerski (2018) introduced a Quantum Fully Homomorphic Encryption (QFHE) scheme that 

allows quantum-efficient computations on both classical and quantum encrypted data, similar to 

classical FHE. The security of the scheme relies on the Learning With Errors (LWE) problem 

with polynomial modulus, which aligns with the best-known security assumptions for classical 

FHE. To support unbounded computation depth, the scheme requires a circular security 

assumption, which is also used in multi-key classical FHE.Brakerski also highlights the 

connection between evaluating quantum gates and the circuit privacy property in classical FHE, 

offering a pathway to constructing QFHE using classical FHE techniques. This work brings 
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quantum encryption closer to practical implementation by leveraging existing classical FHE 

schemes for quantum data [7]. 

 

Mittal and Ramachandran (2021) presented a systematic review of Fully Homomorphic 

Encryption (FHE) research over the past decade. As cloud computing grows and big data 

becomes increasingly prevalent, confidentiality and security challenges, especially in public 

cloud environments, have sparked interest in advanced encryption models. HE allows 

computations on encrypted data without decryption, offering a potential solution to privacy 

concerns.The review focuses on recent developments in FHE, discussing various algorithms such 

as Lattice-based, integer-based, Learning With Errors (LWE), Ring Learning With Errors 

(RLWE), and Nth degree Truncated Polynomial Ring Units (NTRU). These methods are 

examined for their role in enhancing the security and efficiency of cloud-based applications. 

Additionally, the paper highlights the challenges and gaps in FHE research, particularly in terms 

of performance and scalability, and provides insights into future research directions for more 

effective FHE models in the cloud sector.The work offers valuable contributions to the field, 

focusing on how FHE can strengthen data security and privacy in cloud computing, while also 

identifying areas requiring further exploration [8]. 

 

Mustafa et al. (2020) addressed the vulnerabilities of the conventional RSA algorithm in the 

context of IoT-based cloud applications. Due to advancements in quantum computing, traditional 

RSA can be easily compromised, highlighting the need for post-quantum cryptographic methods. 

To tackle this, the paper proposes a lattice-based RSA (LB-RSA) algorithm, which incorporates 

quantum-resistant features to secure shared data in IoT environments.The proposed LB-RSA 

technique is validated with a 60-dimensional key size of approximately 1.152 × 10^5 bits, 

achieving a generation time of 0.8 hours. The security of the algorithm is confirmed through 

testing with AVISPA, ensuring robustness against potential intruders. When compared to 

existing cryptographic methods, LB-RSA demonstrates superior security for data sharing. The 

empirical results suggest that the lattice-based approach not only ensures post-quantum security 

but also outperforms other contemporary techniques in securing communication in IoT-based 

cloud systems [9]. 

 

Sanon et al. (2024) explored the potential of Fully Homomorphic Encryption (FHE) to address 

the limitations of traditional encryption methods in mobile communication. As wireless 

communication systems evolve to meet increasing data processing demands, FHE presents a 

promising solution by enabling computations on encrypted data without decryption, ensuring 

both security and privacy. The paper identifies key applications of FHE and critically evaluates 

its integration into mobile communication systems. Practical demonstrations, such as secure 

network slicing, highlight FHE’s potential to enhance network security and privacy. Despite its 

promise, the authors emphasize the need for further research to fully harness FHE’s capabilities 

in mobile communication and develop secure, privacy-aware networks for the future [10]. 

 

3. Materials and methodology 

 

Data encryption in the cloud is a fundamental practice for ensuring the security and 

confidentiality of sensitive information. With the increasing use of cloud services, where data is 
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stored and processed remotely, encryption serves as a crucial defense mechanism against 

unauthorized access, data breaches, and cyber-attacks. 

 

Table.1. Table summarizing the key terms in cloud data encryption 

Term Description  
Encryption The process of converting plaintext data into ciphertext to secure it during 

storage or transmission.  
Decryption The reverse process of encryption, converting ciphertext back into its 

original plaintext form.  
Cipher An algorithm or set of rules used for encryption and decryption of data 

(examples include AES, RSA).  
Key A piece of information used within an algorithm to transform plaintext 

into ciphertext or vice versa.  
Symmetric 

Encryption 

A type of encryption where the same key is used for both encryption and 

decryption.  
Asymmetric 

Encryption 

A type of encryption that uses a pair of keys: a public key for encryption 

and a private key for decryption.  
Public Key A key that is openly shared in asymmetric encryption systems, used for 

encrypting data.  
Private Key A confidential key in asymmetric systems used for decrypting data, 

which must be kept secure.  
Key Management The process of managing the creation, exchange, storage, and destruction 

of cryptographic keys.  
End-to-End 

Encryption 

Ensures that data can only be read by the communicating parties, 

preventing unauthorized access during transit.  
Hash Function A one-way cryptographic function that generates a fixed-size hash value 

for data integrity verification.  
Digital Signature A cryptographic technique used to verify the authenticity and integrity of 

a message or document.  
This table provides a concise overview of important encryption-related concepts used in securing 

cloud data [11]. 

 

i. Message Digest 5 (MD5) Algorithm: 

 

The MD5 (Message Digest Algorithm 5) is a widely used cryptographic hash function that 

produces a 128-bit hash value from an input message. It ensures the integrity of data transmitted 

over potentially insecure channels by generating a unique digest (hash) for the message. If the 

message is altered, the resulting hash will also change, making it easier to detect tampering. The 

process involved in generating the MD5 hash is as follows: 

 

• Initialize Variables: Four 32-bit variables, typically labeled as A, B, C, and D, are 

initialized with predefined constants. These variables serve as the initial state for the hash 

calculation. 
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• Padding: The message is padded to ensure its length is congruent to 448 modulo 512. 

This is achieved by appending a single '1' bit followed by enough '0' bits, along with the 

length of the original message (in bits) as a 64-bit representation. 

 

• Process Message in Blocks: The padded message is divided into 512-bit blocks. If the 

message is not already a multiple of 512 bits, the padding step ensures the correct length. 

 

• Initialize Hash Values: For each block, initial hash values are set according to the MD5 

specification, ensuring a consistent starting point for each round of processing. 

 

• Process Blocks: Each 512-bit block is processed through a series of four rounds 

involving bitwise operations and mathematical transformations. In each round, the data 

undergoes substitution, permutation, and mixing operations to create diffusion and 

confusion. 

 

• Update Hash Values: After processing each block, the intermediate hash values (A, B, 

C, and D) are updated. These updates are accumulated through each iteration, refining the 

hash as the process progresses. 

 

• Output: After all blocks have been processed, the final hash values A, B, C, and D are 

concatenated to form the 128-bit MD5 digest. This digest is the unique hash 

representation of the original message. 

 

The MD5 algorithm, despite being fast and efficient, is no longer considered secure against 

collision attacks, where two different inputs produce the same hash. Consequently, it is 

recommended to use stronger hash algorithms, such as SHA-256, for applications requiring high 

levels of security [12]. 

 

ii. Secure Hash Algorithm (SHA) Algorithm: 

 

The Secure Hash Algorithm (SHA) family of cryptographic hash functions follows a procedure 

similar to MD5, involving key steps such as padding, block processing, hash initialization, and 

updating. However, SHA algorithms, particularly the SHA-2 variants, provide significantly 

stronger security guarantees and are widely used in modern cryptographic applications. 

 

• Initialization: The SHA algorithm begins by initializing specific variables based on the 

chosen variant (e.g., SHA-1, SHA-256). These initial values are predetermined and serve 

as the starting point for the hashing process. 

 

• Padding: To ensure the message is aligned with the algorithm's block size (typically 512 

or 1024 bits), the message undergoes padding. This step adds a single '1' bit followed by 

sufficient '0' bits. Additionally, the original length of the message, in bits, is appended at 

the end to make the total length a multiple of the block size. 
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• Message Division: Once padded, the message is split into blocks, where each block will 

be processed separately. The division of the message into blocks ensures the algorithm 

can handle messages of arbitrary length efficiently. 

 

• Hash Value Initialization: Initial hash values are set depending on the specific SHA 

variant used. These initial values are crucial, as they provide the starting point for the 

iterative process that generates the final hash. 

 

• Block Processing: Each block is processed through multiple rounds, where a series of 

bitwise operations, modular additions, and logical functions are applied. These operations 

work together to transform the block, ensuring that even a small change in the input 

message leads to a dramatically different hash value. 

 

• Hash Value Update: After processing each block, the hash values are updated, building 

upon the work done in previous rounds. This iterative process continues, incorporating 

the results of each block into the overall hash computation. 

 

• Final Output: Once all message blocks have been processed, the final hash values are 

concatenated to produce the digest. The output length varies by the SHA variant, with 

SHA-1 producing a 160-bit hash and SHA-256 producing a 256-bit hash. 

 

Security Considerations: SHA-2 variants, such as SHA-256, are preferred over earlier versions 

like SHA-1 due to their improved resistance to vulnerabilities like collision and preimage 

attacks. As computational power increases, the SHA-2 family provides a more secure alternative 

for hashing sensitive data, ensuring robust protection in modern cryptographic systems [13]. 

 

iii. AES (Advanced Encryption Standard) Algorithm: 

 

AES (Advanced Encryption Standard) is a widely used symmetric encryption algorithm, built on 

the Rijndael block cipher. It operates on fixed-size blocks of 128 bits and offers flexible security 

levels with three key size options: 128-bit, 192-bit, and 256-bit. The number of encryption 

rounds varies with the key size, providing different layers of security for each configuration. 

Specifically, AES performs 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 

rounds for 256-bit keys [14]. 

 

Encryption Process: 

 

• Byte Substitution (SubBytes): The 128-bit input block is divided into bytes and 

substituted using a substitution box (S-Box), which replaces each byte with a 

corresponding value from a predefined table. This transformation introduces non-linearity 

to the data. 

 

• Shift Row Transformation (ShiftRows): The rows of the state matrix are shifted left in 

a circular manner. The first row remains unchanged, while the second, third, and fourth 

rows are shifted by 1, 2, and 3 positions, respectively. This step helps to mix the data and 

create diffusion across the state matrix. 
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• Mix Column Transformation (MixColumns): This step mixes the columns of the state 

matrix to provide further diffusion. Each column is transformed using a mathematical 

operation that combines the bytes in the column, making it harder to reverse-engineer the 

original input. 

 

• Add Round Key (AddRoundKey): The state matrix is XORed with the round key 

derived from the original encryption key through a key expansion process. This step 

introduces the encryption key into the transformation, adding another layer of security. 

 

Decryption Process: 

 

• Inverse Byte Substitution (InvSubBytes): The inverse of the byte substitution step is 

applied using an inverse S-Box, reversing the substitutions made during encryption. 

 

• Inverse Shift Row Transformation (InvShiftRows): The rows of the state matrix are 

shifted in the opposite direction (right circular shift) to undo the row shifts applied during 

encryption. 

 

• Inverse Mix Column Transformation (InvMixColumns): The inverse of the mix 

column operation is applied to reverse the mixing of data. This step ensures the state 

matrix returns to its original form before encryption. 

 

• Add Round Key (Inverse): Finally, the round keys are applied in reverse order, using 

the key expansion process in reverse to recover the original encryption key. 

 

AES is designed to ensure secure encryption and decryption of data. Its use of multiple rounds of 

transformation (substitution, shifting, mixing, and key addition) provides robust security. The 

number of rounds is determined by the key size: 10 rounds for a 128-bit key, 12 rounds for a 

192-bit key, and 14 rounds for a 256-bit key. These processes collectively make AES one of the 

most widely trusted encryption algorithms in modern cryptography. 

 

iv. RSA (Rivest-Shamir-Adleman) Algorithm  

 

The RSA algorithm is a widely recognized public-key cryptosystem used for key exchange, 

digital signatures, and data encryption. As an asymmetric cryptosystem based on number theory, 

RSA operates with variable-size encryption blocks and keys ranging from one thousand twenty-

four to four thousand ninety-six bits, providing strong security for a variety of applications [15]. 

The following key features define the RSA algorithm: 

 

• Asymmetric Cryptosystem: RSA uses two keys like a public key for encryption and a 

private key for decryption. 

 

• Key Exchange, Digital Signatures, and Encryption: RSA is versatile, supporting 

secure key exchange, authentication via digital signatures, and data encryption. 
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• Variable Size Encryption Blocks: RSA allows flexibility with encryption blocks, 

adjusting to different security needs. 

 

• Variable Key Sizes: RSA can work with key sizes ranging from one thousand twenty-

four bits to four thousand ninety-six bits, allowing for different levels of security 

depending on the application. 

 

Key Generation Process 

 

• Generate Two Large Prime Numbers: Start by generating two large prime numbers, p 

and q. 

 

• Calculate the Modulus n: Compute the modulus n as p multiplied by q, which is used in 

both the public and private keys. 

 

• Calculate Euler’s Totient Function: Compute the function phi of n as the product of p 

minus one and q minus one, which is essential for the key generation process. 

 

• Choose the Public Exponent e: Select a random integer e such that one is less than e and 

e is less than phi of n, and e and phi of n are coprime. 

 

• Compute the Private Exponent d: Calculate d such that one is less than d and d is less 

than phi of n, and the product of e and d modulo phi of n equals one. This ensures that d 

is the modular inverse of e modulo phi of n. 

 

• Public and Private Keys: The public key consists of the values e and n, while the 

private key consists of the values d and n. The values of d, p, q, and phi of n are kept 

secret to maintain the security of the system. 

 

Encryption Process 

 

• Public Key: The sender obtains the recipient's public key, which consists of e and n, for 

encryption. 

 

• Plaintext Representation: Represent the plaintext message as a positive integer M, 

ensuring that M is less than n. 

 

 

• Ciphertext Calculation: The sender computes the ciphertext C using the formula where 

C equals M raised to the power of e modulo n, where M is the plaintext and e and n are 

part of the recipient's public key. 

 

• Send the Ciphertext: The ciphertext C is transmitted to the recipient for decryption. 
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Decryption Process 

 

• Private Key: The recipient uses their private key, which consists of d and n, to decrypt 

the ciphertext. 

 

• Plaintext Calculation: Using the private exponent d, the recipient computes the plaintext 

M by raising C to the power of d modulo n, where C is the ciphertext and d and n are part 

of the private key. 

 

• Extract Plaintext: The recipient then extracts the original plaintext message M from the 

result 

 

v. Advancing Data Security in Cloud Computing 

 

As cloud computing becomes essential for modern data management, ensuring data security and 

privacy is critical. Traditional encryption methods expose sensitive information during 

processing, making them vulnerable. QFHE addresses this challenge by enabling computations 

directly on encrypted data without decryption, preserving confidentiality throughout. Leveraging 

lattice-based cryptography, QFHE resists quantum attacks, ensuring robustness against threats 

like Shor’s algorithm. Unlike classical homomorphic encryption, QFHE optimizes computational 

efficiency and minimizes ciphertext overhead, making it practical for cloud environments. By 

integrating QFHE, enterprises can securely outsource data processing, enabling privacy-

preserving cloud computing in the era of quantum advancements. 
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Fig.2. Homomorphic Integer Operations 

 

The figure depicts homomorphic encryption in a cloud environment, where a user encrypts data 

before sending it to the cloud server. The server processes the encrypted data without decryption 

and returns the encrypted results to the user, who then decrypts them to obtain the final output. 

This ensures secure cloud computing while preserving data confidentiality. Homomorphic 

encryption allows data to remain encrypted while being processed, ensuring privacy and security 

even in the cloud. Users encrypt their data before sending it to the cloud, where computations 

occur on the encrypted form. The result is decrypted by the user after processing, maintaining 

confidentiality throughout the process. This method offers enhanced data privacy, robust 

security, and improved efficiency by reducing the need for large data transfers. It's particularly 

useful in sensitive fields like healthcare, finance, and machine learning, enabling secure data 

analysis without compromising privacy. 

 

Homomorphic Encryption Process and Key Functions 

 

• Key Generation (KeyGen): A security parameter is generated using lambda to define 

the encryption strength. This parameter is then used to create the public, secret, and 

evaluation keys, which are essential for encrypting, decrypting, and performing 

computations on encrypted data. These keys are returned for secure operations. 

 

• Encryption (Enc): The plaintext message is encrypted using the public key, and the 

resulting ciphertext is returned. 

 

• Evaluation (Eval): Perform computations on the ciphertext using the evaluation key and 

the specified function, and then return the resulting evaluated ciphertext. 

 

• Decryption (Dec): Decrypt the ciphertext using the secret key and return the original 

plaintext message. 

 

This process allows operations to be performed on encrypted data, ensuring privacy while still 

enabling meaningful computations [16]. 

 

vi. Proposed (QFHE) 

 

QFHE provides secure data processing by enabling computations on encrypted data while 

protecting against quantum threats. Unlike traditional encryption, QFHE uses post-quantum 

cryptographic techniques like Module-LWE and Ring-LWE to ensure privacy and security, even 

in the era of quantum computing. Applied across sectors like healthcare and finance, QFHE 

enhances both the confidentiality and efficiency of encrypted data operations, making it a crucial 

solution for future-proof data security.  

 

In the QFHE scheme, key generation starts by creating a security parameter based on λ, which 

defines the level of encryption. This security parameter is used to generate the public key (pk), 

secret key (sk), and evaluation key (ek). These keys are essential for encryption, decryption, and 
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performing computations on encrypted data. The function returns these keys for secure 

operations. 

 

• Encryption (QFHE_Encrypt): The encryption process in QFHE uses the public key 

(pk) to encrypt the plaintext message (M). This results in ciphertext (C), which is 

returned. The ciphertext ensures that the message remains securely transformed and 

unreadable. 

 

• Decryption (QFHE_Decrypt):  To retrieve the original plaintext (M), the secret key (sk) 

is applied to the ciphertext (C) during decryption. The function returns the decrypted 

plaintext, allowing the user to access the original message. 

 

• Homomorphic Addition (QFHE_Add): Homomorphic addition in QFHE allows 

encrypted data to be added together without decryption. Using the public key (pk), two 

ciphertexts (C1 and C2) are added, and the result is a new ciphertext (C') that represents 

the sum. This operation ensures that the privacy of the data is preserved during the 

addition. 

 

• Homomorphic Multiplication (QFHE_Multiply): Similar to addition, homomorphic 

multiplication allows encrypted data to be multiplied without decryption. Using the 

public key (pk), this operation multiplies two ciphertexts (C1 and C2) to generate the 

resulting ciphertext (C'). This process allows secure computations to be performed on 

encrypted data without exposing sensitive information. 

 

QFHE enables secure computations on encrypted data while maintaining privacy. It supports 

homomorphic addition and multiplication, offering flexibility for a wide range of privacy-

preserving applications. With efficient and secure execution of these operations, QFHE stands 

out as a strong solution for privacy in sensitive environments. 

 

4. Experimental Results 

 

The performance of the proposed QFHE system was assessed by comparing its key generation, 

encoding, and decoding times with QFHE, AES, and RSA. Experiments were conducted on a 

benchmark dataset using an Intel Xeon E5530 (2.40 GHz) server running Windows 10. 

Implemented in Java, the results highlight the computational overhead of QFHE due to its 

quantum nature. A comparative analysis is presented, focusing on execution times for the key 

generation process, with the results visually summarized in the table below. 

 

Table.2. Password Generation Factors 

S.N

o 

 

  

Password 

 

  

P_K

L 

 

  

AES 

Key_Len 

(bits) 

  

AES 

Key 

SIZE 

(bytes)  

RSA 

Key 

length 

(bits)  

RSA 

Key 

Size 

(bytes) 

QFH

M Key 

SIZE 

(bits) 

QFH

M Key 

SIZE 

(bytes) 

1 

Vk@PuW516

* 9 128 16 2048 256 128 16 

2 @VXFIE181+ 9 128 16 2048 256 128 16 
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3 $AnPsL529* 9 128 16 2048 256 128 16 

4 Wq!DcQ520 8 128 16 2048 256 128 16 

5 !TfUmP882+ 9 128 16 2048 256 128 16 

6 *TxZxA715+ 9 128 16 2048 256 128 16 

7 *WILqM330 8 128 16 2048 256 128 16 

8 B$xCdQ600+ 9 128 16 2048 256 128 16 

9 H$zRhB354+ 9 128 16 2048 256 128 16 

10 $AqNnZ108* 9 128 16 2048 256 128 16 

 

Table 2 provides details on password generation factors, covering aspects like passwords, 

password entropy (P_KL), AES key length and size, RSA key length and size, and QFHM key 

size. The passwords vary in length, and the cryptographic key details are presented in both bits 

and bytes. The AES key consistently has a length of 128 bits and a corresponding size of 16 

bytes. The RSA keys are specified with a length of 2048 bits and a size of 256 bytes. 

Additionally, QFHM keys are assigned a size of 128 bits, which is equivalent to 16 bytes. 

 

Table.3. Password Generation Factors 

S.N

o 

 

  

QFHE_A

ES Key  

SIZE 

QFHE_R

SA  

Key 

length 

QFHE_R

SA Key 

Size 

AES KEY 

Generatin

g 

Time(NA

NO SEC) 

RSA KEY 

Generatin

g 

Time(NA

NO SEC) 

QFHE_R

SA  KEY 

Generatin

g 

Time(NA

NO SEC) 

QFHE_A

ES  KEY 

Generatin

g 

Time(NA

NO SEC) 

1 512 4096 512 0. 3122 0.5114 0.3114 0.3404 

2 512 4096 512 0. 4970 0.6029 0.4029 0.6029 

3 512 4096 512 0.8890 0.9722 0.8022 0.9822 

4 512 4096 512 0.3021 0.5025 0.3025 0.5025 

5 512 4096 512 0.2024 0.4114 0.2114 0.4154 

6 512 4096 512 0.3517 0.6029 0.3029 0.6029 

7 512 4096 512 0.6616 0.8022 0.6022 0.7022 

8 512 4096 512 0.21017 0.5025 0.2025 0.5983 

9 512 4096 512 0.32031 0.7022 0.3022 0.7732 

10 512 4096 512 0.32022 0.5025 0.3025 0.5027 

 

In the above table, the key parameters for the QFHE algorithms are detailed, specifying the 

QFHE_AES key size as 512 bits, QFHE_RSA key length as 4096 bits, and QFHE_RSA key size 

as 512 bits. This consistent configuration across the entries emphasizes the uniformity in 

cryptographic key characteristics within the specified context.  
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Fig.3. Key Generation Times for various algorithms 

 

The above plot values represent the key generation times (in nanoseconds) for different 

cryptographic algorithms. Each row corresponds to a specific password, and the columns 

indicate the time taken for generating AES keys, RSA keys, QFHE_RSA keys, and QFHE_AES 

keys, respectively. The numerical values in each cell denote the corresponding time taken for key 

generation in nanoseconds. 

 

Table.4. Execution time of encryption for file size 10 to 50 MB 

File Size 

(MB) 

Encryption Time (NANO SEC) 

RSA AES QFHE_RSA  QFHE_AES 

10 0.00267 0.00105 0.00099 0.00092 

20 0.02013 0.00472 0.00420 0.00381 

 30 0.11024 0.05235 0.04335 0.02563 

40 0.43896 0.37215 0.32498 0.27491  

50 0.47417 0.41023 0.36567 0.36250 
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Fig.4. Execution time of encryption for file size 10 to 50 MB 

 

The table and figure showcase encryption times (in nanoseconds) for RSA, AES, QFHE_RSA, 

and QFHE_AES across various file sizes (in MB). Notably, the QFHE_AES column highlights 

the efficiency of the proposed values in Fully Homomorphic Encryption. As file size increases, 

encryption times rise for all algorithms; however, QFHE_AES with the proposed values 

demonstrates superior performance. With encryption times of 0.00092, 0.00381, 0.02563, 

0.27491, and 0.36250 nanoseconds for 10, 20, 30, 40, and 50 MB files, respectively, 

QFHE_AES significantly optimizes encryption speed, enhancing secure data processing 

efficiency. 

 

Table.5. Execution 5ime of encryption for file size 100 to 500 MB 

File Size (MB) Encryption Time (NANO SEC) 

AES RSA QFHE_RSA QFHE_AES 

100 0.38247 0.08980 0.07968 0.07011 

200 0.01881 0.05073 0.01748 0.01043 

300 0.99365 0.82215 0.48797 0.23374 

400 8.32224 6.17482 5.21229 5.08493 

500 9.00323 6.88750 5.74873 5.01653 
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Fig.5. Execution time of encryption for file size 100 to 500 MB 

 

The above table and figure provides encryption times measured in nanoseconds for various 

algorithms, including AES, RSA, QFHE_RSA, and QFHE_AES, across different file sizes in 

megabytes. Notably, the QFHE_AES column features encryption times for a variant of Fully 

Homomorphic Encryption (QFHE_AES). As evident from the data, the encryption times 

generally escalate with larger file sizes across all algorithms. A significant observation is the 

efficiency of QFHE_AES, with proposed values showcasing competitive performance compared 

to other algorithms. For file sizes of 100, 200, 300, 400, and 500 megabytes, the QFHE_AES 

encryption times are 0.07011, 0.01043, 0.23374, 5.08493, and 5.01653 nanoseconds, 

respectively. These proposed QFHE_AES values aim to optimize the encryption process, 

delivering reduced nanosecond execution times and heightened efficiency in secure data 

encryption. 

Table.6. Execution time of encryption for file size 10 to 50 KB 

File Size 

(KB) 

Encryption Time (NANO SEC) 

RSA AES QFHE_RSA  QFHE_AES 

10 0.00156 0.00087 0.00070 0.00004 

20 0.01002 0.00350 0.00240 0.00116 

 30 0.04121 0.03216 0.01321 0.01235 

40 0.26104 0.21341 0.16320 0.12775 

50 0.36303 0.30112 0.25731 0.25128 
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Fig.5. Execution time of encryption for file size 10 to 50 KB 

 

The provided above table and figure presents encryption times, measured in nanoseconds, for 

different algorithms—RSA, AES, QFHE_RSA, and QFHE_AES—across varying file sizes in 

kilobytes. Notably, the QFHE_AES column features encryption times for a variant of Fully 

Homomorphic Encryption (QFHE_AES) with proposed values. As observed, the encryption 

times generally increase with larger file sizes across all algorithms. Specifically, the proposed 

QFHE_AES values exhibit remarkable efficiency, showcasing minimal nanosecond execution 

times. For file sizes of 10, 20, 30, 40, and 50 kilobytes, the QFHE_AES encryption times are 

notably low, standing at 0.00004, 0.00116, 0.01235, 0.12775, and 0.25128 nanoseconds, 

respectively. These proposed QFHE_AES values underscore the optimization of the encryption 

process, ensuring reduced execution times and enhanced efficacy for secure data encryption. 

 

Table.7. Execution time of encryption for file size 100 to 500 KB 

File Size (KB) Encryption Time (NANO SEC) 

AES RSA QFHE_RSA QFHE_AES 

100 0.30689 0.20245 0.04296 0.01278 

200 0.62095 0.40731 0.14475 0.09842 

300 0.82825 0.25866 0.16590 0.06398 

400 0.93095 0.64731 0.54630 0.19858 

500 0.99081 0.90866 0.76970 0.50397 
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Fig.5. Execution time of encryption for file size 100 to 500 KB 

 

The table and figure above present encryption times, measured in nanoseconds, for various 

algorithms such as AES, RSA, QFHE_RSA, and QFHE_AES across different file sizes in 

kilobytes. Of particular interest is the QFHE_AES column, which displays encryption times for a 

variant of Fully Homomorphic Encryption (QFHE_AES) with proposed values. The data shows 

that encryption times generally increase as file sizes grow across all algorithms. Notably, the 

proposed QFHE_AES values demonstrate significant efficiency, with exceptionally low 

execution times in nanoseconds. For file sizes of 100, 200, 300, 400, and 500 kilobytes, 

QFHE_AES encryption times are remarkably brief, recorded at 0.01278, 0.09842, 0.06398, 

0.19858, and 0.50397 nanoseconds, respectively. These proposed values highlight the 

optimization of the encryption process, ensuring faster execution times and enhanced 

effectiveness for secure data encryption. 

 

5. Conclusion 

 

In conclusion, the increasing demand for extensive data processing in enterprises has led to the 

generation and transmission of vast amounts of data over the internet. While Cloud Computing 

offers a flexible and cost-effective platform for service delivery, it also introduces significant 

risks by outsourcing services to third-party providers, posing challenges to data security and 

privacy. This research proposes an innovative solution that combines the strength of the 

Advanced Encryption Standard (AES) key with Verifiable Fully Homomorphic Encryption 

(QFHE) to address these issues. The QFHE algorithm enables fast encryption and statistical 

analysis on cloud services, even for devices with limited computational power. Through rigorous 

testing and experimentation, the proposed method demonstrates secure and efficient data storage 

in the Cloud, providing a robust solution to the complexities of handling large datasets while 
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improving data security and privacy. The integration of QFHE offers a promising approach for 

enterprises to leverage the benefits of Cloud Computing while minimizing associated risks. 
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