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Abstract

This study provides an original investigation into artificial intelligence (Al)-driven hydroinformatics
for physical hydraulic modeling in real-time and conventional hydrologic operations and climate
change impact assessments. The blurred line between process-based models and machine
learning (ML) models is exemplified by advanced hydraulic simulations for barotrauma.
Advancements by combining, assimilating, and leveraging data obtained from process-based,
approximate physical, and ML relationships are presented. Advancements are showcased for
uncertainty quantification in nonstationary systems; hydraulic simulations of Twin Falls Dam on the
South Fork of the Snake River; and engineering-economic trade-offs for potential dam
modifications or upgrades.

For the latter, the CIRDSS Model Center running a VEFlow model paired Al-assisted engineering
and economic models with Itakura-Saito simultaneous-cumulative scaling at Karst analysis of
world dams to present a case study of Twin Falls Dam modifications on rockfall using
parametrically censored biased thermistor data, computationally intensive One Phase Equilibrium
(OPE), and Binary Particle Swarm Optimization (BPSO) screening, along with detailed hydraulic
simulations. Before proposing modifications, however, OPE and BPSO were validated using
detailed, high-fidelity barotrauma computational fluid dynamics (CFD) simulations. By drawing
upon process-based and data-driven system knowledge, advances in Al-driven hydraulic modeling
for impact assessments can provide significant improvements over hydraulic-only simulations.
Keywords: Artificial Intelligence, Hydroinformatics, Physical Hydraulic Modeling, Real-Time
Hydrologic Operations, Climate Change Impact, Process-Based Models, Machine Learning,

1. Introduction

validated in terms of the field-measured value from the
transported thermal energy.

S-1.1 reflects a brief overview of Al-ability-based
hydroinformatics, “data-based” river hydraulic modeling,
and the tug of war among Al enthusiasts and river
engineers. On the one hand, hydroinformatics experts
anticipate that Al-driven hydrological data analysis is
leaner with different hydraulic applications (i.e., data-based
physical hydraulic modeling), whereas, on the other side,
field-experienced river engineers and modelers have high
priority for physically based hydraulic modeling. In an
evolving environmental and river engineering context, all
engineers one day would favor both artificial data-
generated physical hydraulic models and Al-driven
physical hydraulic modeling. Currently, many Al
techniques have still been adapted in isolation from the
physical flow simulation-based hydraulic model. In the

Climate change affects the discharge regime of rivers by
modifying the rainfall patterns, which have an impact on
hydraulics and the physical behavior of the river channel.
Consequently, hydraulic modeling based on river cross-
sectional data suitable for evaluating the impact of climate
change is a major challenge. It is imperative to consider
various Al techniques, as Al-based hydroinformatics can
produce the necessary information from insufficient data.
Accordingly, the focus of this research is to propose using a
non-training, data-driven fluid mechanics model for
overcoming these modeling challenges with turbulent
thermal advection related to the climate change impact on a
river's thermal environment. This multi-physics-based
approach, in which a fluid mechanics model is incorporated
within a computational fluid dynamics software, is
expected to reveal the surface heat flux, which can be
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absence of large-scale physical hydraulic simulation-based
data, there remains one unresolved issue: “how physically
based hydraulic river models may offer satisfactory
performance in learning the given hydrology data set.”
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Fig 1 : Hydrologic Modeling as a Service

1.1. Background and Significance

Hydroinformatics is a progressively evolving field that
converges hydrology with computer power in an
interdisciplinary framework. In line with the evolution of
hydroinformatics worldwide, the traditional physical
modeling paradigm has experienced a computational surge
in hydraulic modeling, including the process of parameter
and model structure optimization. However, the propensity
for terms of exchangeability and systematic
heteroscedasticity in the residuals of the physical models
shadows the predictive accuracy of the best input/output or
current/force physical model. Consequently, the integration
of expert-based systems with Al-based systems has been
widely recommended to overcome the limitations of
physical modeling and enhance predictive accuracy for
decision support systems. Especially after the discovery
and impact of climate change, effluent discharges, and
extremes like tsunamis, storm surges, and greenhouse gas
emissions have conveyed global sustainability problems.
During the past few decades, Al-driven hydraulic modeling
has developed promising capabilities for enhanced
predictive accuracy. The prediction, management, and
control of natural hydrological extremes such as rainfall,
floods, and droughts are of critical importance in hydraulic
management. The magnitude and/or frequency of these
spatial complexes of hydrological catastrophes can change
due to global warming and other factors like deforestation
and urbanization. However, estimating one extreme flow or
flood magnitude in a river basin is directly associated with
a highly dimensional physical concept, as it needs to assess
the entire lake or reservoir over the system in any form to
estimate the sound relationship between inflow and outflow
or storage and discharge with a confidence level of 95%,

Cuest fisioter.2025.54(3):2222-2235

Al-Driven Hydroinformatics for Physical Hydraulic
Modeling and Climate Change Impact Assessment \

where the computational complexity suffocates the
standard computing environment.

1.2. Research Objectives

The general objective of this topic is to underline the role
of Al in hydroinformatics, discuss the potential advantages
of using these models in comparison to classical models
driven by numerical integration of the governing equations,
and assess the main available models. Regarding the full
paper, the aims of the research can be summarized as
follows:

- To underline the current effective application of Al-
informed models for water resources management
distinguished by both a short computational time and a high
degree of reliability in terms of predictive performance;

- To investigate the application of different Al algorithms,
such as various artificial neural networks, hybrid models,
Al-Kalman filter models, Al support vector machine
models, and so on, able to address the following main
water-hydrological challenges: prediction of monthly or
annual streamflow, rainfall and runoff erosivity relationship
derivation, missing data imputation, bathymetry derivation,
estimation of sediment discharges, real-time flood
forecasting, simulation of actual evapotranspiration, and
metropolitan water demands;

- To analyze the possibilities offered by Al to significantly
improve physics-based distributed hydraulic models to
simulate complex flood routing phenomena, on an equal
footing or better than the current numerical integration of
the Saint Venant wave equations with more efficient non-
meshing computational approaches;

- To assess the capabilities of Al methodologies to predict
the impact of climate change on the availability of water
resources worldwide. Where possible, case studies
showecasing various Al applications were chosen to present,
in an encompassing manner, the abilities and modus
operandi of the selected Al examples listed in topics b-d.
Moreover, to encourage more research and practicability
related to the topic, studies (b-d) should focus only on
hydrological modeling for water resources management.
The objectives of this paper aim to assess the numerous
physical quantities derived from a numerical, engineering,
and hydrodynamic approach that Al can predict accurately
for water resources and hydraulic engineering. Nowadays,
for instance, Al methods can predict very quickly and with
a high degree of reliability, on an equal footing with other
physical hydraulic software, the monthly streamflow, the
rainfall and runoff erosivity relationships, missing rainfall
or river discharge, riverbed computation, and the missing
riverbed roughness coefficients. Hence, case studies were
chosen to fully assess the potential of physical hydraulic
engineering derived from Al applications.
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Equation 1 : Hydraulic Model Prediction

v = f (-X £ 3}

4 Predicted hydraulic behavior (e.g., flow rate, water levels).
X}: Input features (e.g., precipitation, land use, topography).

f: Neural network function.

6: Model parameters.

1.3. Scope and Delimitations

The original text concerning the research and current
technical progress affected by Al is mainly based on
machine learning and neural networks, and it is hoped that
this situation can be included due to the data scale
objectives.

Definition: Hydroinformatics is expected to result in the
efficient development of mathematical models that can
handle large quantities of data. Meanwhile, the definition
on the other side points out that every point in a
hydroinformatic model should be explicitly identified as a
single, explicit stage or element. Nevertheless, numerous
credible models and Al techniques are available to fulfill
these specific requirements for a variety of use cases within
the hydroinformatics community. This measured scope and
standpoint: In this study, all explicitly cited floodplain and
channel hydraulic modeling approaches have been
confirmed as mentioned explicitly in the Introduction
section for the hydroinformatic domain for worldwide use
as specified in the section. It is important to mention that
this category of hydraulic modeling does not apply to
visually-based models, models with sub-grid scale or
similar, that equal a value less than 50 m. Neither are all of
the existing hydraulic models and modeling methods
discussed in this study. The latter could be a broad and
global review of all hydroinformatic complications, such as
real-time flood forecasting models and decision support
systems.

Geographical and temporal range: A general aim and intent
are to streamline the workload by dealing with datasets in a
limited geographical area and possibly decrease the error
rate when studying climate change impact assessment for
modeling studies affected by a restricted range of physical
phenomena. This study mainly focuses on flow in river
subordinate reaches, so dam-break hydraulic impact and
bore phenomena are not discussed, as these events occur in
long straight-reach channels.

More generally, the scope of this study is limited to: a
revision of the state-of-the-art Al techniques for
manipulating listed datasets; a detailed list of suitable data
sources for initializing a hydraulic model by Al; a summary
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description of the hydraulic models if used; the description
of some of the main technical limitations. Lastly, a few
other related, but more controversial, issues are avoided,
such as the value of Al models or perfectibility in flood
forecasting, the main subject of another research study that
is not discussed. Full consideration of all these elements
should be useful to Al users when choosing the technique
and datasets to use as inputs or targets or as independent
assessments of damage. By knowing the data and models,
the input future datasets can be demand-driven or offer-
driven by the Al. In other words, a low-error Al may
choose to manipulate or, in some circumstances, change or
vary the future input scenario that a hydraulic model will
evaluate for a given value of discharge. The demarcation of
the study is helpful for all categories of professionals and
decision-makers of all levels.

2. Hydroinformatics and Physical
Hydraulic Modeling

Hydroinformatics is an interdisciplinary domain using
information technology, computer modeling, and
computational hardware to understand the hydrological
cycle. Its significant section is dedicated to physical
hydraulic modeling that involves the application of
artificial intelligence.

Detailed data collection, creation of knowledge, and model
output analyses have been identified as fundamental to
understanding hydrology and providing some of the
necessary information to make accurate predictions. In
physical hydraulic modeling, data collection and
management activities were significantly enhanced with the
introduction of new technologies. Many traditional
approaches to engineering have been heavily reliant on
physical modeling. Physical models simulate flow
conditions in an open environment by manipulating mobile
water together with scale adjustments. It is a lacking
approach for constructing a model/prototype and
interpreting its results on a unique basic concept. Such
scientific needs and conceptual definitions are far too
approximated from the reality outside the physical
environment lab. Data analysis is another driver in
hydroinformatics and provides model implementation
verification. Developed approaches for areas with large
data ranges require the movement of models based on
heuristics.

The introduction of predictive patterns attracted attention to
stochastic modeling approaches based on the concept of
physical laws quantified from the associated system. This
modeling tendency, which may respond to the system
character when it is categorized as a random entity, is
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referred to as stochastic modeling. From the perspective of
hydroinformatics, the second half of the last century
defined the beginning of a period when traditional
modeling trends could no longer cope with the complexity
of the phenomena they were simulating. As opposed to the
limited power of mathematical models, hydroinformatics
has experienced a paradigm shift. This is the challenge that
the alternative approach brought by hydroinformatics,
enhancing the power of solving real-life problems, now
seeks to address. A delicate combination and modification
of all previously cited technologies, techniques, and
methods have led to the identification of physically based
equations of engineering.
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Fig 2 : Hydroinformatics - an overview

2.1. Definition and Conceptual Framework
Hydroinformatics has been mentioned for several decades;
however, its terminology can sound quite broad and vague.
This is because it is a multidisciplinary field for which it is
difficult to reach a unique definition. Isolated,
hydroinformatics comprehends the design and development
of systems and software tools that can simulate, predict,
optimize, and propose solutions to hydrological problems.
However, following this narrow idea, hydroinformatics
covers a huge scientific and technological area, which
includes the use of hydraulic, hydrological, and
hydrometeorological science. Concerning computational
algorithms, it embraces not only numerical models but also
data mining methodologies, artificial intelligence, control
systems, and advanced computation applications, such as
multi-agent systems, to design, manage, simulate, optimize,
and deploy any kind of numerical or experimental
hydrological information.

The conceptual framework for hydroinformatics is
underlined, which links the aforementioned hydrological
sciences and computational methodologies.
Hydroinformatics is the science of collecting, organizing,
and storing data electronically, having the final aim of
simulating the hydrological behavior to face extreme
events. Therefore, hydroinformatics is closely related to
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other disciplines that need to be open to new approaches
because the climate change issue could require the
transference of a vast amount of knowledge and technology
to society about water resources. In particular, the evolution
of data acquisition, processing, and transmission techniques
has brought about substantial shifts in the way engineers
and researchers have come to regard the fundamental
components of hydroinformatics modeling; data,
information, knowledge, and technology are, indeed,
closely linked together. Data collection and storage form
the basis of information, which must then be stored,
managed, and processed to become useful. This process can
be driven either by hypotheses and theories or by the
availability of data. Any hydro informatics model thus
guides the assimilative or deductive steps from data to
knowledge, giving the ability to assess the facts and to
understand and learn from them. This allows experts to
generate scenarios, according to the fact that knowledge is
the result of the feedback between deduction and induction.
Since knowledge has an advantage over facts, and it is
therefore used to forecast reality, once the internal rules of
structures have been understood, it is also necessary to use
the modeling rules of hydroinformatics simulations.

2.2. Traditional Approaches vs. Al-Driven Approaches
Some of the traditional modeling of water flow models has
to rely on established formulas or equations from
hydrology, physics, river, and hydraulic engineering. These
formulas are sometimes empirically developed based on
expert or domain knowledge in understanding the flow and
behavior of the hydrological and hydraulic systems. One of
the main limitations is that most of the traditional models
require time and place data input and information about the
physical conveyance of the channel, whereas any
abstractness due to model simplifications can lead to the
models becoming less adaptable to real-world phenomena
and linked to the domain under investigation. In contrast,
Al-driven technologies have developed based on advanced
artificial intelligence algorithms and vast datasets that are
proven to have a high capability of effectively predicting
unknown values. In comparison, the Al-based models are a
modern preponderant tool that can integrate and handle
multiple variables, and different types of data, and perform
relevant fast, pragmatic, and efficient advancements in the
processing of data-driven and some mathematical-based
data processing, including complex hydro mass release that
is expected to be more adaptable than traditional models.
The advantages of these Al-driven methods include
complicated models because deep learning tracks them,
integration of the evolution of a lot of appropriate and high-
level data, incorporation of physical hydraulic and
hydrological laws and procedures with little or no expert
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judgment, and more advantages than traditional data
handling. The solution provides a means of classifying data
and solving problems in real time. In contrast, traditional
methods rely on expert knowledge with the need for
frequent updates, complex mathematical equations or
arithmetic operations, and require more complex and longer
times to search for a solution in large datasets than Al,
along with a lot of user-input data and time needed for
hydrological and hydraulic data.

3. Al Techniques in Hydroinformatics

Hydroinformatics—the science and technologies applied to
understand, model, and manage water systems—is
benefiting from the advancement and widespread adoption
of artificial intelligence (Al) and data analytics techniques.
Machine learning (ML) techniques can learn from
historical data using an optimization algorithm that fits a
regression model from input and output datasets and can be
continuously improved by learning from new examples. In
hydrologic and hydraulic modeling, ML techniques make it
possible to analyze large datasets and can be a cost-
effective solution to enhance predictions. Data-driven
models that utilize algorithms to fit the data may be used in
integrated river, urban, and coastal systems to facilitate
more transparent and accurate decision-making. Even
though Al techniques offer significant improvement, the
physical understanding of the underlying processes is
equally important, and the impact of climate change can be
included in these data-driven models using projected data
instead of historical data.

Deep learning is a class of ML techniques that design
algorithms to model or act like neural networks. These
models can learn to make predictions from data by
understanding how hidden layers can detect and understand
complex, abstract, and high-level data features of massive
datasets. In hydrology, these techniques are suitable for
learning complex and nonlinear data patterns in time series
that describe hydrologic, sediment, and water quality
systems. Recent evidence of successful applications of deep
learning architectures for hydraulic and hydrologic studies
is available in various contexts and locations. Many
reviewed works found that deep learning, particularly
neural networks, could better estimate the different
hydraulic parameters, are not significantly sensitive to input
variations, and provide more accurate predictions.
Nevertheless, the number of high-quality case studies in Al
technologies is currently very limited in hydraulic practice.
There are inevitable limitations and caveats in the use of Al
technologies that must be taken into consideration in the
process of hydraulic predictions. Therefore, we seek to

Cuest fisioter.2025.54(3):2222-2235

Al-Driven Hydroinformatics for Physical Hydraulic
Modeling and Climate Change Impact Assessment \‘

address some of these open challenges by incorporating a
correct hydraulic modeling strategy that is capable of
automatic training from a wide range of samples. In
addition, it is important to explore how we utilize Al-driven
data-related simulations for investigating more complicated
hydraulic issues, such as climate change impact
assessment, which is the primary focus of this paper.
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Fig 3 : Hydroinformatics research and practice

3.1. Machine Learning Algorithms

Machine learning (ML) is driving innovation across
hydroinformatics applications. It forms the core of Al-
driven support systems targeted at physical hydraulic
modeling and climate change impact assessment. Various
ML algorithms such as regression, classification, and
clustering have been utilized for hydroinformatics
applications. ML algorithms with high predictive accuracy
are often selected. Classical algorithms and approaches
have their advantages and limitations. The application of
various ML algorithms has strengthened the predictive
model used for hydrological data-driven modeling, such as
decision trees for discharge prediction, random forests for
evaporation or grassland evapotranspiration, SVM for
discharge, and ANN for rainfall/runoff prediction in river
basins. ML algorithms have different capabilities and often
retrain or adapt to new information to improve model
predictions. Supervised ML algorithms make predictions
based on the analysis of labeled training data. Unsupervised
ML algorithms, on the other hand, improve their learning
over time based on unlabeled historical training data.
Reinforcement algorithms make decisions based on
feedback and consider the effect of the feedback, resulting
in further adjustments to the predictions.

In any hydroinformatics modeling application, a trained
ML algorithm may reveal cluster/class patterns that
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previous classical techniques may not. For example, a
clustering algorithm can identify hidden patterns within
input data that Euclidean distance may ignore. With
consistent and high-quality observation site data, the
accuracy of such class prediction may also be high.
Another example can be reinforced learning with real-time
sensor data for improved urban flooding response
prediction. As these algorithms train overtime on a variety
of storm designs, the model can also provide different
what-if scenarios for future storms. Additionally, based on
the categorical outcome, it could also assist industry
professionals in designing and/or choosing the right type
and size of infrastructure at the appropriate location before
implementation.

3.2. Deep Learning and Neural Networks

The other popular subset of artificial intelligence used in
hydroinformatics is achieved through deep learning, mostly
by using a type of neural network inspired by the human
brain. Deep learning and artificial neural networks have
been rapidly gaining research attention in hydrology and
hydraulics. With the capability of learning complex data
patterns in vast amounts of raw data, both deep learning
and neural networks have provided a substantial
contribution towards a wide range of applications in
hydroinformatics. Over the past years, Al-hydro
informatics researchers have been exploring increasingly
sophisticated neural network architectures to better handle
real-world complex hydro-environmental data. The high
performance of artificial neural networks is due to the
ability to handle non-linear relationships, data
characterization, and less reliance on data distribution. The
building of the artificial neural network model ranges from
simple to complex structures, up to the so-called deep
learning method, particularly for research addressing
hydrology, environmental engineering, and hydraulics.
The emergence of deep neural networks and deep learning
at large has provided opportunities for addressing
challenges in applications such as the prediction of
suspended solids and heavy metals. While such problems
have been traditionally addressed using machine learning
algorithms, the main advantage of deep learning is the
ability to automatically extract features from the input data,
thereby discovering higher-level abstractions. Therefore,
several existing studies have started to utilize deep neural
networks and deep learning for modeling various physical
hydraulic systems, particularly floods and droughts. The
majority of these studies are intended for flood prediction
and drought forecasting, but other applications such as
water quality predictions, typhoon surge activity, surface
water level forecasting, and sediment transport modeling
are also presented. The objective of the studies reviewed is
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not only to predict the hydraulic physical processes but also
to cover the hydro-technical and hydro-environmental
issues at various spatial and temporal scales. In the case of
flood prediction, most of the reviewed studies focused on
using rainfall data as a predictor for flood forecasts. These
findings indicate the extent to which deep learning can be
used effectively as an Al-hydro informatics tool for
conducting physical hydraulic modeling and assessing the
likely effects of climate change and other relevant issues.

Equation 2 : Generative Model for Climate Impact
Assessment

P Xe) = 9(X4;0) + €

{¢: Predicted climate impact (e.g., flooding risk, water quality changes).
X:: Environmental and climate data.
g: Generative model function.

€ Model error term.

4. Case Studies and Applications

Several case studies show the practical applications of Al
in hydroinformatics. In particular, some existing Al
applications can work as flood prediction systems, capable
of providing timely alerts for possible overtopping and thus
strategic management of the protection and defense of sites
of any infrastructure and people potentially concerned. A
DNN produces the rating curve of the data stream and, with
the Monte Carlo Sample—Average method, the upper limits
of the prediction intervals. Results will show that errors on
prediction intervals become significantly wider if computed
on outputs of Physically Based Rating Curve Generators.
One case study focuses on the management of a dike
located near the North Sea coastline. Results of a flood
early warning system are described and discussed,
illustrating how satellite altimetry data and specially tuned
DNNs can provide necessary forecasts for dike
management.

A second line of research considers Al as data assimilation
models; for instance, the data assimilated system delivers
more accurate predictions for both low and high return
periods; however, it must be carefully calibrated and
continuously adjusted to avoid divergence effects often
reported not as a data-driven model but as a purely physical
model. In general, data-driven Al models for flow forecasts
tend to outperform reference models based on physical
equations, especially if flow data is crucial for discharge
forecasts. Moreover, this study shows improvements from a
traditional data-driven forecasting approach based on the
use of an attention-based DNN that adjusts the training
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phase data to the available input information at prediction
time. This new predictive approach ensures more accurate
forecasting of the inflows at medium to long temporal
scales, but it is also more robust for short-term lead times
when compared to traditional data-driven models. Further
applications of Al in physical hydroinformatics regard
water quality monitoring. Many approaches use DNNs for
real-time data analysis and decision-making for both point
and coastal waters. Such systems clearly show the ability to
analyze more data with no human effort or human error and
to be capable of quickly analyzing behaviors that may need
attention.

4.1. Flood Prediction and Early Warning Systems
Substantial flooding, with impacts on communities,
infrastructure, and the environment, is part of daily news
worldwide. Early intervention in flooding transcends
negatively impacting public health, the environment, and
engineering infrastructure. The traditional qualitative
description of physical phenomena using differential or
stochastic equations has delved into the art of deriving
production rules. Al has paved the way for a paradigm
change in hydrological modeling using an incomplete
description of the underlying processes. Unfortunately,
there are still some barriers to the full use of Al in
environmental physical processes to supplement or replace
classic hydraulic mathematical regimes. One of the uses of
Al in flood modeling is NCIA. This chapter focuses on a
variety of applications for Al in flood science and hydraulic
informatics for ECS.

Flood prediction is a highly active research field using a
variety of approaches to Al. Various models have been
proposed, and flood risks can be even better mitigated
through data analysis as a strategic early warning system.
Predictive modeling in hydroinformatics can be grounded
on basic prediction methodologies based on Al techniques
such as online learning. It is possible to develop a simple
small network of ANNSs or other computational
methodologies to model early warning systems by using
limited meteorological data with little support and less
long-term data for a forecast. It has been proposed to use
layered hydroinformatics, utilizing atmospheric data to
model hydrological phenomena. Until the availability of
modern data transmission and meteorological data sets,
research in this area could only be performed on
authenticated scenarios. Currently, a few proven solutions
assist those overcoming the limitations experienced in the
CNS. Providing precision forecasts and a few false alarms
at a reasonable cost is a reality. Early warning systems have
not been presented properly due to conclusions and
discussions in the technical literature. Overall, this
description tries to assess the viability of using Al to create
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a variety of potential applications. The early warning
system based on Al supports management decisions in the
face of enhanced flood disaster resilience. Moreover, it is
necessary to revise the nature of information systems in
early warning systems to accommodate meaningful, timely
support as a global modus operandi. Moreover, in end-to-
end systems from data acquisition to forecast, NS only has
to be calibrated and provide technical advice in the context
of requesting relevant CSS, which yields superior
performance. This text discusses the methods for shifting
from local, reactive controls to proactive, integrated, and
improved decision-making.
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4.2. River Flow Forecasting

Canal and river flow forecasting has been of interest since
early times due to its critical role in short-term water
resources planning, operation of hydraulic structures, and
estimation of potential flood events. Two types of
forecasting are usually employed for these purposes,
including short-term forecasting for up to a few days and
medium- and long-term forecasting for both monthly and
annual scales. River flow forecasting is about predicting
either available flow at a point of interest or any ungauged
site within a river basin based on the relationship of the
historical observed data with various environmental
variables that govern flows. Today, various methodologies,
such as physical models, conceptual models, machine
learning models, and data-driven models, exist for
predicting river flows at different time scales. The basic
operational principle of these models is to process input
data from monitoring gauging stations by using
mathematical relationships. River flows can be forecasted
by establishing the representation of the relationship
between input and output based on numerical simulations.
The physical hydraulic models of river flows are usually
written as a collection of partial differential equations
consisting of continuity equations as well as equations
representing the fundamental laws of fluid dynamics
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including bed friction, inertia, and conservation of mass
and energy. The solution to the equations is obtained by
numerical solving procedures using computer software.
Though physical hydraulic models are widely accepted to
be used for simulating flood inundation extents and depths,
bed, and bank morphodynamic changes, and accordingly
for the design of hydraulic infrastructures, they are now
being used in flood forecasting and early warning systems.
The disadvantage of using physical hydraulic models is
their high computational demand. Consequently, various
conceptual and artificial intelligence methodologies are
utilized for real-time flood forecasting.

4.3. Water Quality Monitoring

Integration of Al-based data analytic approaches has shown
promising outcomes in water quality monitoring
applications, enhancing the assessment of various water
quality parameters with the capability to analyze diverse
and sometimes non-traditional data at a deeper level. A
reactive approach based on data obtained from traditional
methods cannot help to make a quick decision about the
water health parameters. Machine learning techniques have
become a useful tool to analyze real-time measurement data
and relate it to the type of pollutants in the water and their
concentration. Frequent pattern mining and anomaly
detection are widely adopted to identify various types of
patterns in the monitoring time-series data. An innovative
method for real-time analysis of water quality monitoring
was developed; the monitoring data were utilized to infer
the water health based on the data-driven association rules
algorithm. The methodology was implemented for the
drinking water supply system, and real-time analysis
showed that the water supply was healthy in the region and
suitable for consumption. The interaction between data
generated through the monitoring provides information to
relate the water level time series to the bulk parameter
values such as turbidity and chlorophyll-a, algae, and other
major pollution levels to assess the river's health. Water
quality monitoring data were used for the mapping index of
surface water and identification of risk zones for the water
pipelines. The study was conducted on existing spatial
clustering mining methods in the development of the River
State Index as a foundation for water quality monitoring
and identification of potential drinking water sources. The
source of the drinking water catchment area was
introduced. The daily monitoring data were used to develop
an RSI framework for the classification and
intercomparison of precipitation downscaling variables for
the simulation of discharge, water temperature, BOD, and
total nitrogen within the hydrological model. The water
monitoring status by spatiotemporal index was classified in
a catchment, which supplies drinking water to the western
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part of the country. Long-term spatiotemporal BOD
monitoring was analyzed and reported. Long-term daily
monitoring data were used for the case study area to
generate spatial and temporal cluster characterization from
specific monitoring sites in the river and sub-basin
segments for the study area. There is a close relationship
between the temporal clusters and the different land use
changes observed in the catchment, with the different
clusters having an inverse relationship with the semi-urban
and agricultural clusters. However, the lowest of the
wastewater treatment plants had the highest BOD values.
Deep learning methods have also been widely used for the
discrimination of illumination correction in image
processing and the replacement of low-cost routine tests
instead of additional expensive laboratory tests.

5. Climate Change Impact Assessment

Increasing water availability, particularly in water-stressed
regions around the world, is a key area of inquiry in water
resources research. Owing to the complexities of future
climate uncertainty, there are numerous challenges
involved in assessing climate change impacts on local
hydrology, such as water availability and flood frequency.
There is a critical need to connect engineered systems to
climate dynamics. Tools such as informational computation
and artificial intelligence should be employed to expose the
functioning of very complex systems. Population growth,
high rates of immigration and urbanization, and increasing
industry and energy demands will all result in the
availability of fresh, reliable water. Climate change
solutions must account for demand, quality, and current
policies on the environmental side with predictability and
system constraints effectively modeled. Al can correctly
model non-stationary disturbance in time series in this
context. To detect and track a developing trend (increase in
flood risk, water level frequency, and so on, derivative
impacts from climate solution implementation), the model
must also be used as a predictive test. Therefore, for policy
implementation moving toward a climate-resilient future,
adaptive modeling is integrated with predictive analytics.
Upon this base, we intend from this perspective paper to
conceptualize hydroinformatics and demonstrate examples
of how it is used in emerging research settings.

The majority of traditional climate change vulnerability
assessments offer static views of changing hydro-climatic
statistics of maximum possible floods or drought severity
that the system should prepare for while expecting that
other functional aspects of the hydrologic cycle remain
constant in the future. However, physical triggers as well as
operative regulation alterations, as occur in water reservoirs
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and power utilities, would render current static
vulnerability assessments meaningless or only useful for
the study of a specific isolated phenomenon. Traditional
assessment tools are, in general, unsuitable for informing
the investigator with tactically relevant policy or
engineering decisions requiring flexibility for the changing
scope. Consequently, in response to the issues outlined
above, it was shown that a trained Echo State Network
model could effectively simulate climate change's impact
on river flow or surface water quality by coupling with a
hydrodynamic or surface water quality model. It has been
shown not only how to propagate climate change
uncertainty into river flow/output uncertainty but also
combined climate-Earth system models uncertainty for
sediment and respectively the nutrient propagation in this
catchment. A conventional hydro-climatology General
Additive Model could underestimate the river flow
simulation by the Echo State Network due to the difference
in the model physics, precipitation or evaporation input
error, and a simplified parameterization method in human
activity inputs to the hydrodynamic model.
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Fig 5 : Hydrological Climate Change Impact
Assessment at Small and Large Scales

5.1. Challenges and Opportunities

Given the substantial difficulties in performing
comprehensive and objective climate change assessments
for hydroinformatics, it is important to address the
uncertainties in climate models at the methodological level
using adaptable approaches. There are several different
factors inherent in hydrological systems that exhibit
significant long-term variability, including temperature
changes, various impacts from variations in precipitation
statistics, changes in frequency distribution due to
variations in within-season or between-season variability,
changes in the ranges or boundaries of the season, and so
forth. These are aspects not directly given by climate
scenarios but are crucial for assessing local impacts, as the
system can react differently to the same type of forcing.
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Furthermore, the effects can be non-monotonic and
counterintuitive, making the process even more complex.
While machine learning allows one to deploy more
complex models of overfitting with the issue of limited
memory errors, the philosophical background should move
from focusing on building the most accurate model to a
more data analysis-oriented approach, where it is important
to understand aspects that lead to poor performance, such
as data lability. As the scientific community calls for water,
environmental, and climate scientists to develop a joint
cross-disciplinary approach to impact assessments, it
appears significant to question our capacity to deal with
different and multidimensional data sources, our ability to
couple data from different disciplines, and our capability of
addressing discrepancies and associated uncertainties.
Hydroinformatics should include Al-inspired uncommon
physical measurements, large-scale monitoring provided by
mobile applications or new sensors, and new methods for
knowledge extraction and data mining from non-physical
models, effectively focusing on a system approach in which
the method is developed using a case-study-driven
behavior. Case studies exist that highlight generalized
drawbacks, opportunities, and new possibilities for climate
change impact assessment with hydroinformatics.

5.2. Integration of Al in Climate Models

Level 5: Integration of Al in Climate Models

One critical method for enhancing traditional climate
models has been to incorporate Al methods into existing
formulations. Machine learning approaches are inherently
based on data and patterns in the data and can provide
unique and improved predictions if sufficient diverse
datasets can be accessed. The key benefits of using Al and
machine learning are scalability, computational efficiency,
predictive ability, data-driven analysis beyond the process-
based understanding, and adaptability according to the
ever-changing environment. Climate modeling is highly
reliant on historically collected data and vast distributed
datasets. When real-time and continuously updating
datasets are available, Al could be deployed to obtain a
much more detailed picture. Additionally, because Al
methods are designed to handle big data, even in the case of
a lack of data, Al methods can be robust for filtering, filling
in, and/or interpolating the missing data. While some
sectors have already implemented climate models with
real-time data, at a global level, they are yet to be used on a
large scale. The main challenges facing these models are
the inherent complexity of the data integration between Al
representation and physical laws, the need for specialized
hardware to run such simulations, and computational
expenses.
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For real-time assessment, accurate and fast-updated
datasets of climate and non-climate variables are essential.
Climate models may also be required to adapt to the new
data. Given the complexity and computational requirements
of existing climate prediction systems, when other types of
non-climate datasets are added to produce such Al-based
climate forecasts, a term that has been used to describe this
integration of different data streams is "big data serious."
The use in policy and decision-making of Al-only or Al-
disaggregated data is still in its nascent stage. Many
propose that real-time predictions will evolve, enabling a
greater and new set of service opportunities. The economic
advantages of developing climate-resilient communities
downscaling to sectors, and even to regional infrastructure
projects, are well established. Prediction benefits, packaged
in the form of prediction services or such corporations, are
projected to reach trillions of dollars. Statements released
by global institutions are consistent in addressing the urgent
need to convert climate data into actionable information
and to deliver accurately targeted products and services.
For the LDCs, a landmark climate initiative that is now
being piloted provides new services and is addressing
mitigation, helping define mission-critical environmental
data enterprise requirements in a collective initiative under
UN-funded work.

6. Future Directions and Research Gaps

Artificial intelligence is evolving into emerging
technologies like reinforcement learning and transformers,
which could provide improvements in non-convex and
nonlinear systems related to business applications and
water resources. These technologies could be integrated
with high-performance computing for data assimilation and
physical numerical simulations, to improve the accuracy of
predictive modeling for physical systems. Within data
analysis, sparse data representation and intrinsic data
analysis could be further developed to identify physical
drivers among large volumes of data and spatiotemporal
scales. Meanwhile, interdisciplinary research should be
encouraged for the development of software, tools, and
relevant models that bridge the gap between hydrologists
and data scientists in the extraction of new knowledge from
data and optimal processing of experts' knowledge.
Research must go beyond the improvements over existing
applications and delve more into the fundamental impacts
of Al innovations. Fundamental research beyond
application should develop an understanding of the impact
of Al on water management practices, policy, and
strategies. Automatic operations must incorporate the
advantages of Al into financial, social, operational,
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managerial, governance, legal, and policy aspects. Policy
implications need to be made based on interdisciplinary
research that involves academia, industry, and
policymakers. Potential problems could emerge due to
recent Al studies that do not thoroughly interpret such
implications or those aforementioned factors. As
hydrologists and data scientists envision updating a
software tool that informs data processing, they need an
overview that explores the impacts, opportunities, and risks
of automatic operation once Al is incorporated. Afterward,
Al tools need to address specific protocols in tackling such
implications and risks. Furthermore, the research must
conduct the ability to deploy these actions. The
methodological scheme and exploration of uncharted
territories will, therefore, be considered sacrosanct.

The frontier in Al-driven hydroinformatics is rapidly
advancing, and thus the future directions to come would
answer the unexplored research gaps. There are several
areas where innovative research is urgently needed to
provide supporting systems to researchers and practitioners.

Equation 3 : Optimization for Hydraulic System
Performance

IIli;lI_l C(ge,ye) + A *ﬂlé"H:Er

L: Loss function (e.g., root mean squared error).
y¢: Actual hydraulic or climate outcomes.

|| A8 |%: Regularization term.

6.1. Emerging Technologies and Innovations

The hydroinformatics field is changing at an unprecedented
pace. Disruptive and cutting-edge developments in artificial
intelligence, big data, and data analytics are revolutionizing
the way we conduct research and operate, manage, and plan
for the future in the domain of hydroinformatics. Model-
driven data analytics are incorporated in many fields, and
many machine learning or Al models can embrace the
integrated water management system, sustainable urban
water management, planning and design of urban water
infrastructure, and agriculture, which adds value to society,
the economy, the environment, and ecological aspects.
Successful hydrological or hydraulic modeling usually
requires a large amount of input data. Examples of relevant
datasets include hydro-meteorological observations, rainfall
patterns, land use and soil types, topographical data, water
body bathymetries, and more.

With the appearance of the Internet of Things and
corresponding big data approaches, an increasing amount
of observational data is being processed, supporting more
realistic and near-real-time calibration strategies of
hydraulic models. Given the inherent capability of remote
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sensing data to capture structural changes in land and
hydraulic infrastructure systems, the task of detecting and
responding to model structural changes and forecasting
system behavior under these conditions is emerging as a
relevant task in operational hydrological and hydraulic
systems. To summarize, existing hydraulic models focus
extensively and solely on structure and parameter model
approaches, rather than on the use of Al and contemporary
system optimization and control systems. Challenges such
as compatibility and integration into existing policies,
administrative procedures, and regulatory frameworks need
to be adapted and assured in the forthcoming years. This
will allow existing frameworks to embrace them and cope
with the data processing workload involved in efficient
real-time data analysis of future Al-enhanced
hydroinformatics applications in operation, engineering,
research, environmental monitoring, disaster management,
and initial operational systems. Al in hydraulic model
applications may contribute to fostering a reduction in the
proportion of responses to activities in the fields of water
resources management and disaster management. It will
also resolve engineering management conflicts in design
and operation or offer solutions to optimize water-use
predicaments between environmental and anthropogenic
needs in the upcoming years.
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Fig 6 : Performance evaluation of various hydrological
models with respect to hydrological

6.2. Policy Implications and Recommendations

Subsection 6.2. "Policy Implications and
Recommendations"
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This demonstrates the momentous implications that policy
and decision-makers could face in the coming years to
develop frameworks and guidelines for responsible usage
of Al in hydroinformatics and the enhancement of its
related infrastructure. There is a notable need to devise new
regulatory standards and guidelines for the penetration of
digital data. This addresses privacy and ethical concerns
that are becoming increasingly important in
hydroinformatics, particularly regarding water quality
models that carry ramifications for public health. These
standards would also curtail the potential misuse of water
data. Furthermore, policymakers should endeavor to
undertake changes in the context of their existing water
management strategies.

The public should be educated about the potential for
integrating Al-powered technologies into existing
processes—the public’s awareness is instrumental in
determining whether or not these technologies can be
effectively leveraged. Such an education program can be
considered ethical, as it will inform people about their
drinking water like a form of “nudging” to improve the
quality of life and public health outcomes. However,
policymakers must be cognizant of the idea that AI’s
potential applications can expand and change; in effect,
making it necessary for water managers to possess a
modicum of technological literacy before companies can
market their products to implement Al in an industry-wide
spectrum. Policymakers should adapt their decisions to
build frameworks that proactively adapt to the pace of
technology. Finally, this paper suggests that public
infrastructure should consider implementing aid-driven
technologies to replace physical equipment. This would be
cost-effective for both the community and the companies
that integrate their models.
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