

Biological Synthesis of Spilanthes Acmella Nanoparticles

Shradha Jalan¹, Devika Pillai*², Sivakamavalli Jeyachandran³

^{1,2,3}Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-77, Tamil Nadu, India;

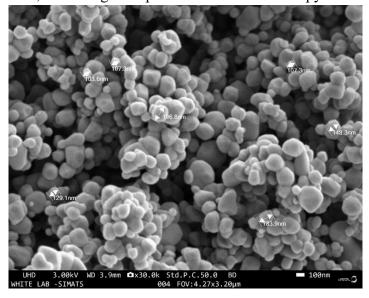
Correspondence Author: devikaspillai.sdc@saveetha.com

ABSTRACT

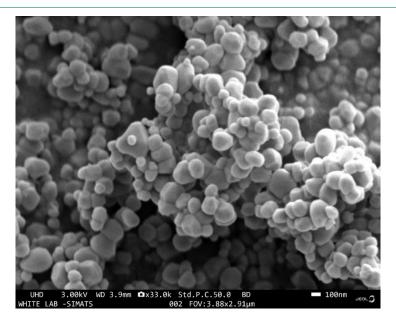
Premna integrifolia L. is extensively distributed in tropical and subtropical regions. In this study, green silver nanoparticles were efficiently synthesized by mixing 1 mmol/L AgNO3 and 4% aqueous leaf extract at a neutral pH (7.0) after 25 minutes of sunlight exposure. The aqueous leaf extract was rich in polyphenols, with a higher flavonoid content (67.23 \pm 1.23 mg/mg gallic acid equivalent) than phenolic content (58.10 \pm 2.29 mg/mg rutin equivalent). The synthesized silver nanoparticles were characterized using various spectroscopic and microscopic techniques. They exhibited a spherical shape and sizes ranging from 9 to 35 nm. The crystalline nature of the nanoparticles was confirmed through high-resolution transmission electron microscopy (HRTEM), high-resolution scanning electron microscopy (HRSEM), X-ray diffractometry (XRD), and selected area electron diffraction (SAED) analyses. The presence of silver ions in the biosynthesized nanoparticles was confirmed based on energy-dispersive X-ray (EDX) data (3.5 keV). Functional groups involved in nanoparticle synthesis were analyzed using FT-IR. The silver nanoparticles showed significant antibacterial activity against human pathogenic gram-positive (Staphylococcus aureus, Enterococcus faecalis) and gram-negative (Shigella dysenteriae, Shigella flexneri, and Vibrio parahaemolyticus) bacteria. Additionally, the silver nanoparticles exhibited good in vitro antioxidant and cytotoxic activity against a human cervical cancer cell line (SiHa). **Keywords:** Spilanthes acmella, nanoparticles, Biological synthesis

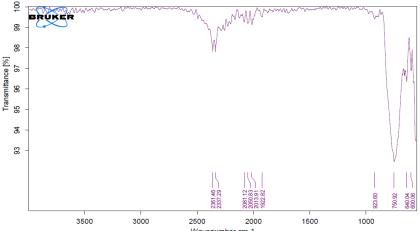
Introduction

Nanotechnology represents a rapidly growing field with diverse applications in catalysis, solar energy, waste management, and sensing technology. In the medical field, nanomaterials are employed for drug delivery, disease diagnosis, treatment of cardiovascular ailments, wound healing, and the development of antimicrobial agents. Nanoparticles, especially those synthesized using noble metals, exhibit unique physicochemical properties not found in individual molecules or bulk metals. Silver nanoparticles, in particular, are widely used due to their versatile applications. However, conventional methods of nanoparticle synthesis are expensive and environmentally toxic, necessitating the exploration of alternative, eco-friendly synthesis methods. Green synthesis of silver nanoparticles using plant materials offers a costeffective, rapid, and environmentally benign approach. Plant extracts, rich in phytoconstituents, serve as reducing agents for silver ions, facilitating nanoparticle synthesis. Factors such as temperature, pH, plant extract concentration, and silver nitrate concentration influence the synthesis process. Premna integrifolia L., found in tropical and subtropical regions, has long been utilized in traditional medicine for its antimicrobial and antioxidant properties. This study aimed to synthesize silver nanoparticles using aqueous leaf extract of P. integrifolia and evaluate their physicochemical characteristics and biological activities.



Materials and Methods


Fresh leaves of P. integrifolia were collected, washed, and heated in deionized water to obtain the aqueous leaf extract. Total phenolic and flavonoid contents were determined using Folin—Ciocalteu and AlCl3 colorimetric methods, respectively. Silver nanoparticles were synthesized by mixing the aqueous leaf extract with silver nitrate solution and exposing the mixture to sunlight. Various parameters such as sunlight exposure duration, silver nitrate concentration, and leaf extract concentration were optimized to achieve efficient nanoparticle synthesis. The synthesized nanoparticles were characterized using spectroscopic and microscopic techniques including UV–Vis spectroscopy, FT-IR, HRTEM, HRSEM, XRD, SAED, and EDX. Antioxidant activity was evaluated using the DPPH scavenging assay, while antibacterial activity was assessed against gram-positive and gram-negative pathogenic bacteria. Cytotoxicity was tested against a human cervical cancer cell line (SiHa) using the MTT assay.


Results and Discussion

The aqueous leaf extract of P. integrifolia exhibited substantial phenolic and flavonoid content, providing a rich source of reducing agents for nanoparticle synthesis. UV–Vis spectroscopic analysis confirmed the synthesis of silver nanoparticles, with a characteristic surface plasmon resonance peak at 417 nm. Optimization experiments revealed that a 4% leaf extract concentration, 1 mmol/L silver nitrate concentration, and 25 minutes of sunlight exposure were optimal conditions for nanoparticle synthesis. FT-IR analysis indicated the involvement of functional groups from the plant extract in nanoparticle synthesis. HRTEM and HRSEM images revealed spherical nanoparticles with sizes ranging from 9 to 35 nm. XRD and SAED analyses confirmed the crystalline nature of the nanoparticles. EDX analysis confirmed the presence of elemental silver in the synthesized nanoparticles. AFM analysis provided insights into surface texture and particle size distribution. The synthesized nanoparticles exhibited potent antioxidant activity, scavenging free radicals effectively. They also demonstrated significant antibacterial activity against both gram-positive and gram-negative pathogenic bacteria. Furthermore, the nanoparticles showed promising cytotoxicity against a human cervical cancer cell line, indicating their potential for cancer therapy.

Conclusion

The study successfully synthesized silver nanoparticles using the aqueous leaf extract of P. integrifolia. Characterization using various analytical techniques confirmed the physicochemical properties of the nanoparticles. The nanoparticles exhibited notable antioxidant, antibacterial, and cytotoxic activities, highlighting their potential applications in medicine and biotechnology. Further research is warranted to explore their therapeutic efficacy in vivo and optimize their synthesis for large-scale production.

References

- 1) Zaki SA, Ouf SA, Albarakaty FM. Trichoderma harzianum-Mediated ZnO Nanoparticles: A Green Tool for Controlling Soil-Borne Pathogens in Cotton. J Fungi. 2021,10;7:952. 10.3390/jof7110952.
- 2) Shobha B, Lakshmeesha TR, Ansari MA, et al. Mycosynthesis of ZnO Nanoparticles Using Trichoderma spp. isolated from Rhizosphere soils and its synergistic antibacterial effect against Xanthomonas oryzae. J. Fungi. 2020;6:181. 10.3390/jof6030181.
- 3) Yusof HM, Mohamad R, Zaidan UH et al. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed

- supplement in animal industry: A review. J Anim Sci Biotechnol. 2019;10:1–22. 10.1186/s40104-019-0368-z.
- 4) Ting BYS, Fuloria NK, Subrimanyan V et al. Biosynthesis and Response of Zinc Oxide Nanoparticles against Peri-implantitis Triggering Pathogens. Materials (Basel). 2022;27:3170. 10.3390/ma15093170.
- 5) Vishaka S, Sridevi G, Selvaraj J. An in vitro analysis on the antioxidant and antidiabetic properties of Kaempferia galanga rhizome using different solvent systems. J Adv Pharm Technol Res. 2022;13:S505-S509. 10.4103/japtr.japtr 189 22
- 6) Sneka S, Santhakumar P. Antibacterial Activity of Selenium Nanoparticles extracted from Capparis decidua against Escherichia coli and Lactobacillus Species. Research Journal of Pharmacy and Technology. 2021; 14:4452-4. 10.52711/0974-360X.2021.00773.
- 7) Nasim I, Rajeshkumar S, Vishnupriya V. Green Synthesis of Reduced Graphene Oxide Nanoparticles, its Characterization and Antimicrobial Properties against Common Oral Pathogens.Int J Dentistry Oral Sci. 2021;8:1670-75. 10.19070/2377-8075-21000332
- 8) S Rajeshkumar, T Lakshmi. Anticariogenic Activity of Silver Nanoparticles Synthesized Using Fresh Leaves Extract of Kalanchoe Pinnata. Int J Dentistry Oral Sci. 2021;8:2985-87. 10.19070/2377-8075-21000607.
- 9) Kamath AK, Nasim I, Muralidharan NP, et al. Anti-microbial efficacy of Vanilla planifolia leaf extract against common oral micro-biomes: A comparative study of two different antibiotic sensitivity tests. J Oral Maxillofac Pathol. 2022; 26:330-334. 10.4103/jomfp.jomfp 293 21.
- 10) Lima LF, Oliveria JE, Carneirio JN, et al. Ethnobotanical and antimicrobial activities of the Gossypium (Cotton) genus: A review. Journal of Ethnopharmacology. 2021;279;114363. 10.1016/j.jep.2021.114363
- 11) Fahimmunisha BA, Ishwarya R, AlSalhi MS,et al. Green Fabrication, Characterization and Antibacterial Potential of Zinc Oxide Nanoparticles Using Aloe Socotrina Leaf Extract: A Novel Drug Delivery Approach. J. Drug Deliv. Sci. Technol. 2020;55:101465. 10.1016/j.jddst.2019.101465.
- 12) Sun Q, Li J, Le T. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. J. Agric. Food Chem. 2018;66:11209–11220. 10.1021/acs.jafc.8b03210. 1
- 13) Pandao M.R., Sajid M. Synthesis and Characterization of Nano Zinc Oxide for Linseed. J. Pharmacogn. Phytochem. 2021;10:846–848.
- 14) Jain S, Mehata MS. Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property. Sci Rep. 2017; 7:15867. 10.1038/s41598-017-15724-8.
- 15) Hanumith S, Abirami S, Velrajan M. Biosynthesis of zinc oxide nanoparticles potentiates anticancer and antimicrobial activity. IJTSRD. 2018;2:1797–1802.
- 16) Rajakumar G, Thiruvengadam M, Mydhili G, et al. Green approach for synthesis of zinc oxide nanoparticles from andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess. Biosyst. Eng. 2018;41:21–30. 10.1007/s00449-017-1840-9.

Shradha Jalan¹, Devika Pillai*², Sivakama valli Jeyachandran³

Biological Synthesis of Spilanthes Acmella Nanoparticles

