

Cuest.fisioter.2025.54(1):363-391 363

Articles

ADAPTIVE MEMORY UPDATE MECHANISM FOR MITIGATING

CATASTROPHIC FORGETTING AND OPTIMIZING MEMORY

UTILIZATION IN TEXT-BASED CONTINUAL LEARNING

J. Ranjith1* and Dr. Santhi Baskaran2

1Research Scholar, Department of CSE, Puducherry Technological University, India

2Professor, Department of IT, Puducherry Technological University, Puducherry, India

Corresponding author: ranjithsathiya07@ptuniv.edu.in1*

I. Introduction:

Problems such as catastrophic forgetting and memory inefficiency are prevalent in machine

learning, particularly in the context of continual learning frameworks in which models are

asked to solve a series of learning tasks sequentially. In the case of catastrophic forgetting, a

model forgets what it previously had learned while learning new tasks, and inefficient memory

utilization leads to resource constraints which limits the model's performance and scalability.

To enable the development of reliable and high performance learning systems that adapt as the

underlying data distribution changes, these challenges need to be resolved. Recently, a number

of ways to overcome such problems have been investigated. Therefore, Retrospective Learning

Law Correction (RLLC) [1] is a method to dynamically adapt memory units in order to improve

the optimizer's performance and demonstrate the importance of flexible memory management

to accommodate changing task variance. The authors of [2] proposes an adaptive memory

Abstract. Catastrophic forgetting, inefficient memory utilization and task adaptation are problems

in continual learning in textbased datasets. In this research, in order to overcome these challenges,

the proposed Adaptive Memory Update Mechanism (AMUM) serves as a framework for dealing

with these challenges in a reasonable manner. The AMUM framework incorporates three core

components: The Task Priority Evaluation Unit (TPEU) orients the use of a dynamic task

prioritization based on recency, complexity and frequency; the Dynamic Memory Allocation Unit

(DMAU) optimizes memory utilization considering task relevance; and the Adaptive Regularization

Module (ARM) stabilizes soft weights of key functions by adding noise to prevent catastrophic

forgetting and facilitate new learning. Its benchmarks were run over the benchmark text datasets

AG News, and IMDB Reviews, 20 Newsgroups and Reuters-21578. We compared AMUM

performance to baseline models such as Elastic Weight Consolidation (EWC), Experience Replay

(ER) and Repeated Augmented Rehearsal (RAR), and found AMUM achieves the average accuracy

of 90.8 and average forgetting of 0.07, while the average forgetting of these baseline models is 0.20,

0.22, and 0.12. AMUM also had very high learning efficiency of 85.7 and average memory

utilization of 82%. The robust performance and the ability of AMUM to retain knowledge while

learning the sequential tasks are finally evaluated. AMUM’s modular design can scale and adapt to

be applied within natural language processing, healthcare, autonomous systems, and finance. Next

steps are to improve computational efficiency and utilize context aware mechanisms as well as to

extend the framework to multi modal datasets. As a result, AMUM is a promising approach to

continual learning in dynamic natural world environments.

Keywords: Continual Learning, Catastrophic Forgetting, Adaptive memory mechanism, Deep

learning, Natural Language processing, dynamic memory allocation.

mailto:ranjithsathiya07@ptuniv.edu.in

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 364

update mechanism with a new loss function to counter catastrophic forgetting in continual

learning by updating memory with function of task importance to keep necessary information.

Memory Banks, used by Adapted Memory Networks [3], serve the purpose of producing

memory banks made possible by input data and capable of efficient inference, addressing

complex tasks while maintaining a memory consumption that scales with task requirements.

This paper extends these insights, and introduces a novel Adaptive Memory Update

Mechanism (AMUM) that allocates resources dynamically following task relevance, using

adaptive regularization and dynamic memory allocation. The goal is providing a Dynamic

Memory Allocation Unit (DMAU) for adjusting the memory allocation as well as for

realocation of some resources to the high priority task in this study. Additionally, the Adaptive

Regularization Module (ARM) for applying selective regularization to regularize weights for

significant tasks and inhibit catastrophic forgetting; and integrating DMAU and ARM into a

coordinated unit (AMUM) that optimizes memory allocation as well as regularization

according to task relevance. To investigate the benefits of AMUM, we test its memory

utilization efficiency, catastrophic forgetting mitigation and overall model performance across

a sequence of learning tasks on benchmark datasets under experiments. AMUM attempts to

deal with problems like memory overload and catastrophic forgetting by reserving resources

according to the relevance of the task, ensuring that important information is maintained and

memory constraints are mitigated. This research is expected to produce a new memory update

mechanism based on an adaptive memory that combines dynamic memory allocation and

adaptive regularization, improved strategies to resist catastrophic forgetting in machine

learning models, and improved memory utilization efficiency in continual learning. Example -

Text Classification adaptive memory update mechanism. Suppose we had a machine learning

model trained to annotate text documents in several categories of text (news articles, scientific

papers, and social media posts). Over time, new categories are introduced, and the model has

to learn to recognize these new categories while remembering previously learned categories.

Traditional models tend to suffer from catastrophic forgetting, and the introduction of new

categories will cause a drop in performance for past ones.

We address this problem by introducing the Adaptive Memory Update Mechanism (AMUM),

which allocates memory resources based on the relevance of each task. For example, AMUM

reserves a larger amount of its memory to store information which the model has just very

recently been taught on a lot of news articles. Further, the Adaptive Regularization Module

(ARM), applies selective regularization to the associated weights of these categories to stabilize

them so that they do not get over written when training new categories. With this, the model is

assured to perform well in all categories regardless the continual forgetting. Fig. 1 shows the

architecture of the AMUM where the Adaptive Regularization Module (ARM) and the

Dynamic Memory Allocation Unit (DMAU) interact.

Fig. 1. Adaptive Memory Update Mechanism (AMUM) architecture

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 365

The remainder of this paper is organized as follows: Section II contains a survey, followed by

a related work discussion on adaptive memory mechanisms and regularization techniques. An

AMUM framework based on DMAU, ARM design is presented in Section III. In Section IV

experimental setup are shown on benchmark datasets and in section V is evaluating the

Results and Analysis. The study discuss in Section VI by identifying a few research directions

of interest and it concludes in section VII.

II. Related Work

Extensively explored in the development of adaptive memory update mechanisms and

regularization techniques in machine learning to resolve issues like catastrophic forgetting and

waste of resources. This section surveys essential work in this area, discussing dynamic

memory allocation, adaptive regularization, and their use in continual learning.

A. Dynamic Memory Allocation and Adaptive Optimization.

Finally, in [1], a method in terms of Retrospective Learning Law Correction (RLLC), which

dynamically enforces memory units in order to improve optimizer performance, is introduced.

The emphasis of this work is on the need for flexible memory management to address variable

task demands. Second, [4] proposed Brug, an adaptive memory allocator that allocates

resources depending on workload characteristics to achieve better performance in dynamic

environments.

B. Adaptive Memory Networks

In [3], Adaptive Memory Networks are proposed, i.e. constructing memory banks with respect

to input data for efficient inference and complex tasks. The architecture supports the dynamic

updates of memory, which matches the use of memory to the functions. Building on this idea,

[9] presented Dynamic Memory Networks for visual and textual question answering, showing

the flexibility of adaptive memory mechanisms to work across modalities.

C. Adaptive Regularization Techniques

Large-margin training combined with confidence weighting to deal with non-separable data

very effectively, while in general, adaptive regularization helped improve model robustness, as

seen, for example, in [10]. Catastrophic forgetting has been addressed by [11] Elastic Weight

Consolidation (EWC), a method in which learning on weights important to previous tasks is

slowed down to retain learned knowledge.

D. Continual Learning and Catastrophic Forgetting

Catastrophic forgetting in gradient-based neural networks is investigated empirically in [12],

and the requirement for strategies that keep performance on previously seen tasks while

learning new ones is evidenced. In this case, Learning without Forgetting (LwF) [13] reutilizes

knowledge distillation to ensure prior knowledge is retained and models can learn new tasks

without reducing performance on preceding tasks. In [14] Progressive Neural Networks,

architectures are expanded in order to fit new tasks without interfering with prior knowledge.

E. Memory-Augmented Neural Networks

In [15], Memory-Augmented Neural Networks were presented that used external memory to

store and retrieve information over long periods, allowing the model to handle tasks that require

long-term dependencies more easily.

F. Adaptive Memory Update Mechanisms

In [2], a novel method for resolving the catastrophic forgetting challenge in continual learning

was introduced by leveraging an adaptive memory update mechanism and a new loss function,

where it is necessary to update memory based on task relevance, and it is desired that relevant

information be retained in the memory.

G. Adaptive Dynamic Memory Allocators

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 366

[5] explored adaptive dynamic memory allocators aimed at estimating application workloads

to dynamically optimize memory allocation, showing the role of adaptive memory

management in the performance of the system.

H. Adaptive Memory-Improved Update Models

In [6], a multi-view correlation tracking model with an adaptive memory-improved update

mechanism is proposed, which could deal with complex environments and long-term

occlusions.

I. Continual Learning through Primal-Dual Optimization

[7] introduced Primal-Dual Continual Learning to strike a balance between stability and

plasticity by adaptive memory allocation and language duality to control resource distribution.

These studies illustrate that adaptive mechanisms for memory update combined with

regularization techniques play a central and indispensable part in building sufficiently robust

models of adaptive machine learning that can continuously learn and manage resources without

sacrificing previously acquired knowledge or suffering from catastrophic forgetting.

III. Proposed Framework: Adaptive Memory Update Mechanism (AMUM)

To address the continued challenges of catastrophic forgetting and poor memory utilization in

continual learning tasks, especially text-based tasks, the Adaptive Memory Update Mechanism

(AMUM) has been formulated as a novel framework. Dynamic memory allocation and

adaptive regularization are used to ensure that only critical information is retained, but new

learning requirements are accommodated. In continual learning, models have to learn new

tasks in a sequence while avoiding task forgetting, which is what is required in most cases.

Traditional methods, however, face two significant challenges: interference, or as some people

refer to it, catastrophic forgetting and memory overload. AMUM addresses these challenges

through two key components: The Dynamic Memory Allocation Unit (DMAU) and Adaptive

Regularization Module (ARM). A DMAU can control memory usage to minimize the negative

effects of this limitation and optimize task prioritization. ARM removes inferential influence

from new tasks through retrieval and stabilization of necessary weights with respect to older

tasks. According to AMUM, importance metrics should be used to access memory resources

that are as recent, complex, and frequent as possible given the current task. This leaves room

for more crucial activities without utilizing too much memory. Stability weight ability of

stability regularization is employed for critical tasks, and a recognition factor is used to

regularize the stable weight to discover how much it should be regularized. The synergistic

process of memory and regularization integration addresses the issues of memory allocation

and weight regularization by maximizing the usage of resources in controlled and variable

environments. The Adaptive Memory Update Mechanism (AMUM) architecture Figure 2

attempts to address the challenges of continual learning, including catastrophic forgetting and

memory usage inefficiencies.

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 367

Fig 2. Architecture of Adaptive Memory Update Mechanism (AMUM)

The system comprises several interconnected components:

A. Input Layer: It takes these as text based tasks and extracts from the tasks features such

as the recency, complexity and frequency needed to decide task priority.

B. Task Priority Evaluation Unit: The extracted features were then used with the task

scores to calculate a priority score for each task. Finally, it outputs a score, for which

we next combine a weight of features in guide the future decisions regarding memory

allocation.

C. Dynamic Memory Allocation Unit (DMAU): According to the priority scores, the

DMAU dynamically allocates memory resources to tasks as much as possible. Critical

information is kept around because functions with high priority get more memory.

Furthermore, it is memory distribution normalized to alleviate over scattering.

D. Adaptive Regularization Module (ARM): Finally, this module introduces a method

for weighting model weights by the relative importance that each task places on these

weights. To address catastrophic forgetting upon adding new tasks, it selectively

regularizes weights for important tasks.

E. AMUM Integration Module: It integrates the outputs from DMAU and ARM,

synchronizing memory allocation and regularization components. It provides a

balanced model update that keeps (or incorporates) previous knowledge and also new

knowledge.

F. Output Layer: Finally, the proposed final layer uses the updated model parameters to

ensure performance remains high for all tasks while balancing the memory usage and

stabilizing the most critical weights.

AMUM is an architecture which allows it to dynamically adapt to new tasks while maintaining

knowledge of previous ones, adding robustness and efficiency to continual learning in the

model.

A. Input Layer:

The Adaptive Memory Update Mechanism (AMUM) Input Layer is created to handle tasks

given as text datasets and represents the first component in the processing pipeline. Inwardly,

however, its primary function is to pre-process incoming data, extract its pertinent features,

and prepare the information for its subsequent priority evaluation and processing through the

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 368

system. The primary reason for this layer is to allow the AMUM framework to rank tasks

efficiently in terms of relevance and complexity.

When text datasets corresponding to various tasks (e.g. text classification, sentiment analysis,

topic modelling) are passed into the Input Layer, a series of pre-processing steps take place.

Tokenization consists of breaking the text into words or subwords; encoding converts tokens

to numerical representations like word embedding or TF-IDF vectors, and feature

augmentation means adding metadata like timestamps or task-related category labels.

Therefore, this pre-processing yields consistent input format for such a seamless integration to

latter components of the developed system, in particular, a Dynamic Memory Allocation Unit

(DMAU) and an Adaptive Regularization Module (ARM). The extraction of task-specific

features required for priority computation is a critical aspect of the Input Layer. These features

include:

1 Recency (fr): Assigns higher priority to, more recently, a task that has been introduced to

the system.

2 Complexity (Fc): It takes into consideration how intricate the dataset is: stand of text,

vocabulary diversity, or linguistic intricacy.

3 Frequency (ff): It allows dimension rate of occurrence or update of a task with higher

emphasis on frequently recurring tasks.

It extracts and structures relevant information from text datasets so that Input Layer can

correctly quantify the relevance and complexity of each task. Quantifying this using this

quantification helps the DMAU use memory efficiently, ARM stabilize weights more

precisely, and the AMUM framework seamlessly integrates with this capability to yield a

system that can better adapt to continual learning scenarios. We normalize and quantify these

features and then produce a feature vector for each task 𝑇𝑖. To accurately calculate task priority

scores, the Task Priority Evaluation Unit requires such a structured representation.

𝐹𝑖 = [𝑓𝑟(𝑇𝑖), 𝑓𝑐(𝑇𝑖), 𝑓𝑓(𝑇𝑖)] (1)

Fig 3. AMUM Framework Input Layer Implementation Flow

Figure 3 illustrates the flow of the Input Layer under the Adaptive Memory Update Mechanism

(AMUM) framework which systemically processes an input text task. It starts by ingesting a

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 369

variety of text datasets — news articles or sentiment analysis data, for instance — and then

selects the task type relevant for each of these datasets. Next, we go to the preprocessing stage,

in our example this includes tokenizing (splitting the raw text into units such as words or

subwords) and encoding (the transformation of these units into its numerical representation

such as word embeddings or TF-IDF scores). Besides, feature augmentation augments the

dataset with the task specific metadata like timestamps and category labels so that they are

providing a larger informational amount. Following preprocessing, the system extracts critical

features: recency (𝑓𝑟), assessing how recently the task was introduced; complexity (𝑓𝑐),

evaluating the dataset's intricacy; and frequency (𝑓𝑓), determining the occurrence rate of the

task or its updates. These features are then compiled into a structured feature vector 𝐹𝑖 =

[𝑓𝑟(𝑇𝑖), 𝑓𝑐(𝑇𝑖), 𝑓𝑓(𝑇𝑖)] for each task 𝑇𝑖. The extracted features are forwarded to the Task Priority

Evaluation Unit where the priority score 𝑃𝑖 is computed by weighted combination of the

extracted features. In this thesis, we enhance this processed dataset with priority related

metadata and put it in the hands of the subsequent stages of the AMUM framework: dynamic

memory allocation and adaptive regularization so that continual learning is both efficient and

effective.

B. Task Priority Evaluation Unit

It implements the AUAM framework, which constitutes the TPEU element that structures and

evaluates the relevance, recency, complexity, and frequency of tasks. An such prioritization

ensures the optimal allocation of resources to the most significant tasks for the most effective

system functioning in the change or learning conditions. The TPEU operates by first extracting

critical features from incoming tasks, recency (𝑓𝑟), which measures how recently a task was

introduced; complexity (𝑓𝑐), evaluating the intricacy of the dataset; and frequency (𝑓𝑓),

indicating how often a task or its updates occur. These features are then combined using a

weighted formula to compute a priority score 𝑃𝑖 for each task 𝑇𝑖 :

𝑃𝑖 = 𝛼 ⋅ 𝑓𝑟(𝑇𝑖) + 𝛽 ⋅ 𝑓𝑐(𝑇𝑖) + 𝛿 ⋅ 𝑓𝑓(𝑇𝑖) (2)

Here, 𝛼, 𝛽, and 𝛿 are parameters that can be adjusted with respect to how much each feature

impacts the overall priority score. The scores are then normalized to these possible values to

prevent over allocating of resources after computation. A priority queue is then formed by

sorting the tasks in descending order of priority, and these tasks are used for dynamic memory

allocation and adaptive regularization. It performs a systematic ranking of functions and

evaluation to ensure that high priority problems can be fixed fast and efficient way while

optimizing the use of resources and streamline the whole learning system.

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 370

Fig 4. Flow Structure for the Task Priority Evaluation Unit (TPEU)

Figure 4 depicts flow structure of the Adaptive Memory Update Mechanism (AMUM) which

comprises Task Priority Evaluation Unit (TPEU). Firstly, in the Input Stage the Input Layer

sends the feature vectors, recency (𝑓𝑟), complexity (𝑓𝑐), and frequency (𝑓𝑓) metrics to the Input

Stage per task 𝑇𝑖. In the Feature Weighting phase, these features are multiplied by their

respective weights: We use 𝛼 for recency, 𝛽 for complexity, and 𝛿 for frequency. This weighted

combination yields a raw priority score 𝑃𝑖 for each task, calculated as 𝑃𝑖 = 𝛼 ⋅ 𝑓𝑟(𝑇𝑖) + 𝛽.

𝑓𝑐(𝑇𝑖) + 𝛿 ⋅ 𝑓𝑓(𝑇𝑖). represent the weights of the different factors. The raw scores from these

tasks are then normalized through the Normalization Module which yields scores that are

consistent across tasks, but within a standard range. Once normalized Task Ranking stages rank

tasks in a descending sorted order on the basis of normalized score of priority, to get ranked

list. Finally, the scored ranked list of patches is fed downstream to components such as the

Dynamic Memory Allocation Unit (DMAU) and Adaptive Regularization Module (ARM).

This method of structured flow helps the TPEU in taking an optimal look at and priority of

tasks to allocate resources in the AMUM framework.

C. Dynamic Memory Allocation Unit

Dynamic Memory Allocation Unit (DMAU) plays a vital role in the AMUM (Adaptive

Memory Update Mechanism) framework by dynamically managing and allocating memory

resources according to the priority of the task. In particular, there is a focus on managing and

allocating resources in a task-specific manner, memory optimization, and flexibility in

learning. In fact, the DMAU allocates memory to the tasks proportionally and occupies high-

priority tasks' memory enough by utilizing the priority scores 𝑃𝑖 computed by the Task Priority

Evaluation Unit (TPEU). This allocation is guided by the formula

𝑀𝑡+1 = 𝑀𝑡 + 𝛾 ⋅ 𝑃𝑖 (3)

where 𝑀𝑡 represents the current memory allocation, 𝛾 is a scaling factor, and 𝑃𝑖 is the priority

score for task 𝑇𝑖. To maintain balance and prevent overallocation, the DMAU normalizes

memory distribution across all tasks, employing normalization techniques such as

𝑀𝑡+1 =
𝑀𝑡+1

∑𝑖=1
𝑛  𝑀𝑡+1

 (4)

where 𝑛 denotes the total number of tasks. Moreover, the DMAU continually tracks task status

and dynamically adjusts memory allocations in real time to accommodate priority shifting or

resources becoming available for tasks. With this dynamic adaptation, high-priority tasks will

maintain an appropriate level of resources for proper processes, and low-priority tasks will get

an adequate level of resources required to support some minimum operations without

interfering with priority processes. The DMAU effectively manages memory resources to

improve the scalability, flexibility, and robustness of the AMUM framework, which makes this

an indispensable piece in continual learning environments.

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 371

Fig 5. The Flow Structure of the Dynamic Memory Allocation Unit (DMAU)

The flow structure of the Adaptive Memory Update Mechanism (AMUM) framework's

Dynamic Memory Allocation Unit (DMAU) is represented in Figure 5. The first stage is the

Input Stage, where tasks with their scores of priority. First comes the input stage, where tasks

have their priority scores. In the proposed framework, it is also essential to identify pertaining

to tasks. (𝑃𝑖) generated by the Task Priority Evaluation Unit (TPEU), are received.

Simultaneously, the current memory allocation state (𝑀𝑡) is retrieved to establish a baseline

for adjustments. In the Memory Adjustment Stage, the DMAU computes the new memory

allocation (𝑀𝑡+1) for each task using the formula 𝑀𝑡+1 = 𝑀𝑡 + 𝛾 ⋅ 𝑃𝑖, where 𝛾 is a scaling

factor that determines the extent of adjustment based on task priority. Once the new allocations

are calculated, the Normalization Stage adjusts them so that the total memory allocation over

all tasks is within the system's constraints. It is done by normalizing and scaling the allocations

proportionally. If the memory usage of the system is more than what is available, the

Reallocation Stage allocates memory from lower priority tasks to higher ones, to provide a

good usage of memory resources with fairness in terms of functions. Finally, the Continuous

Monitoring Stage monitors task statuses, and adjusts memory allocations in real time, so

DMAU works in real time and adapts to the change in task priorities and availability of

resources. In the last stage, the Output Stage, the updated memory allocations (that is, (𝑀𝑡+1)

will be passed to the downstream components particularly Adaptive Regularization Module

(ARM) for further processing. Structured flow, applied in DMAU, helps to effectively support

high priority tasks as well as to manage the memory efficiently as to satisfy balance for the

whole system that makes it the main building block of the AMUM framework.

D. Adaptive Regularization Module

In the framework of Adaptive Memory Update Mechanism (AMUM), Adaptive Regularization

Module (ARM) is the key aspect to improve model stability and performance in continual

learning tasks. Its main intention is to dynamically adjust regularization parameters for a given

task based on the significance of each model parameter for trained tasks so as to reduce

catastrophic forgetting and promote knowledge retention. Catastrophic forgetting is the

phenomena that continual learning models are sequentially exposed to new tasks and the

performance on old functions decay. To address this challenge, the ARM employs adaptive

regularization strategies in which each parameter contribution is evaluated for importance with

the help of Fisher Information Matrix methods, etc. Critical parameters to previous tasks are

regularized more such that those parameters cannot make significant updates, and therefore,

such knowledge is utilized.On the contrary, parameters that are less critical for previous tasks

are regularized less strictly to have more freedom to learn new information. This dynamic

adjustment results in effective balancing as the model is able to stabilize as well as be plastic.

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 372

Additionally, the ARM is seamlessly integrated with the Dynamic Memory Allocation Unit

(DMAU) to support both efficient memory resource allocation during the regularization

process and overall model performance. The ARM mitigates catastrophic forgetting by

preserving important parameters and enabling flexibility for the model where needed, thereby

improving model stability while consuming limited resources and ensuring all that is essential

is retained, making the component an integral part of the AMUM framework for continual

learning environments.

Algorithm: Adaptive Regularization Module (ARM)

Input:

• Current model weights: 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛}

• Task-specific data: 𝑇𝑖

• Regularization strength parameter: 𝜆

• Importance metric function: 𝐼(𝑤𝑘, 𝑇𝑗)

Output:

• Updated weights: 𝑊′ = {𝑤1
′ , 𝑤2

′ , … , 𝑤𝑛
′ }

1. Initialize:

• Retrieve model weights 𝑊.

• Set regularization strength 𝜆.

2. Evaluate Importance:

For each weight 𝑤𝑘 in :

• Compute its importance to previously learned tasks:

𝐼𝑘 = ∑  𝑚
𝑗=1 𝐼(𝑤𝑘, 𝑇𝑗) (5)

where 𝑚 is the number of previously learned tasks, and 𝐼(𝑤𝑘, 𝑇𝑗) is an importance metric (e.g.,

Fisher Information or gradient magnitude).

3. Apply Regularization:

For each weight 𝑤𝑘 in :

• Update the weight using the regularization term:

𝑤𝑘
′ = 𝑤𝑘 − 𝜆 ⋅ 𝐼𝑘 (6)

4. Clamp Weights:

• Constrain the updated weights within a permissible range to ensure stability:

𝑤𝑘
′ = Clamp (𝑤𝑘

′ , min, max) (7)

5. Adapt Regularization Strength (Dynamic Adjustment):

• If task performance deteriorates:

• Adjust 𝜆 dynamically to increase regularization for critical weights:

𝜆′ = 𝜆 + Δ (8)

• If task performance improves:

• Decrease 𝜆 to allow more flexibility:

𝜆′ = 𝜆 − Δ (9)

6. Output Updated Weights:

• Return the updated weight matrix 𝑊′ = {𝑤1
′ , 𝑤2

′ , … , 𝑤𝑛
′ }.

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 373

Fig 6. The Adaptive Regularization Module (ARM) Flow Structure.

Figure 6 shows the flow structure of the Adaptive Regularization Module (ARM) wrapped

within the Adaptive Memory Update Mechanism (AMUM) framework. The Input Stage starts

the Process by passing the current model weights and task-specific data to the ARM. During

the Importance Evaluation phase of the module, the importance of each model parameter with

regard to previously learned tasks is determined using metrics such as the Fisher Information

Matrix. After that, during the Regularization Application stage, ARM tames each parameter by

multiplying each parameter's already computed importance with an appropriate regularization

term in order to ensure that the critical parameters are preserved and new learning is allowed.

In the Dynamic Adjustment phase, task performance is monitored, and, if needed,

regularization strength is adjusted to maintain a proper tradeoff between stability and

adaptability. Finally, in the Output Stage, the ARM updates model weights with adaptive

regularization applied and feeds them to the succeeding components of the AMUM framework.

The structured flow is able to effectively alleviate catastrophic forgetting and promote model

performance in the context of continual learning.

E. AMUM Integration Module

The dynamic memory allocation unit and the adaptive regularization module are synchronized

in the Adaptive Memory Update Mechanism (AMUM) framework by the AMUM Integration

module. This module is the central control node that balances the feedback between memory

allocation and regularization during continual learning while ensuring smooth interaction

among them so both can update a model. The DMAU sends the memory allocations to the

module with new priorities depending on the task relevancy and importance. It also

incorporates the rate of regularization change made by the ARM to stabilize the critical model

parameters. It does this by ensuring that the model learns some knowledge gained from a

previous task, and some from the current task. This yields a learning system capable of handling

sequential tasks effectively without catastrophic forgetting or memory overuse. The model

weighting is adjusted dynamically based on allocated memory resources per task as well as the

amount of regularization for protecting important parameters in the integration process. This

balanced update permits the learned representations to remain stable, and allows for efficient

adaptation to new tasks. Therefore, the AMUM Integration Module acts as the bridge between

memory management and task learning to ensure that model improves without regressions on

the previously solved tasks. The AMUM Integration Module essentially enables the

considerations of the memory and the regularization process in the system, so that both the old

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 374

and the new knowledge are retained and integrated for the ultimate purpose of the improvement

of the learning efficiency of the whole system.

Pseudo Code for AMUM Integration Module

Initialize necessary components

Initialize DMAU, ARM, and the model

Set task_list = [T1, T2, T3, ..., Tn] # List of sequential tasks

Set model_weights = Initialize_Model() # Initialize model parameters

Set memory_allocations = {} # To store memory allocations per task

Set regularization_params = {} # To store regularization parameters per task

Function to update the model

def update_model_with_new_task(task, model_weights, memory_allocations,

regularization_params):

 # Step 1: Allocate memory resources based on task priority using DMAU

 task_priority = calculate_task_priority(task)

 memory_allocation = DMAU.allocate_memory(task, task_priority) # Get memory

 allocation from DMAU

 # Step 2: Adjust the model's regularization parameters using ARM

 regularization_strength = ARM.adjust_regularization(model_weights, task)

 # Step 3: Update model weights using both memory allocation and regularization

adjustments

 updated_model_weights = integrate_memory_and_regularization(model_weights,

memory_allocation, regularization_strength)

 # Step 4: Store updated memory allocation and regularization parameters for future tasks

 memory_allocations[task] = memory_allocation

 regularization_params[task] = regularization_strength

 return updated_model_weights, memory_allocations, regularization_params

Function to integrate memory allocation and regularization updates

def integrate_memory_and_regularization(model_weights, memory_allocation,

 regularization_strength):

 # Integrate memory allocation and regularization updates to prevent catastrophic forgetting

 # The mechanism ensures that older knowledge is preserved while allowing new knowledge

to be learned

 # Apply the memory allocation update to model parameters

 model_weights_updated = apply_memory_allocation_to_weights(model_weights,

memory_allocation)

 # Apply regularization to prevent overfitting to new tasks

 model_weights_regularized = apply_regularization_to_weights(model_weights_updated,

regularization_strength)

 return model_weights_regularized

Function to apply memory allocation to model weights

def apply_memory_allocation_to_weights(model_weights, memory_allocation):

 # Adjust weights according to the memory allocated for the current task

 return model_weights * memory_allocation # Example of memory-based adjustment

Function to apply regularization to model weights

def apply_regularization_to_weights(model_weights, regularization_strength):

 # Apply regularization strength to the weights to prevent forgetting previous knowledge

 return model_weights * (1 - regularization_strength) # Example of regularization

adjustment

Main loop for processing all tasks

for task in task_list:

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 375

 model_weights, memory_allocations, regularization_params =

update_model_with_new_task(task, model_weights, memory_allocations,

regularization_params)

Final updated model

return model_weights

The AMUM Integration Module synchronizes the AMU Dynamic Memory Allocation Unit

(DMAU) output and the ARM Adaptive Regularization Module (ARM) output to facilitate

efficient continual learning. The DMAU, ARM and the model are initialized and the learning

tasks (e.g. AG News, Imdb Reviews) are shown. Also set up for tracking and updating through

the process are the model weights, memory allocations, and regularization parameters. The

module calculates a task priority for each task using the DMAU, which assigns memory in

accordance with task recency, complexity, and relevance. Then, the ARM adapts the

regularization strength to cancel out the learning of unnecessary model parameters to prevent

catastrophic forgetting as well as permitting the update of new knowledge. The integration

function has the result of the integration of memory and regularization updates into a single

weight update for the model. This way the model keeps the previously learnt knowledge while

the learning of new tasks are facilitated. These updates are applied to the model weights by the

module by modifying them based on assigning memory to them and how strong the

regularization enforcing is. More specially, for memory allocation, we choose to adjust the

weight proportionally to the task’s memory requirement and add regularization to do not over

fit and ensure the stabilisation of some critical parameters. At the conclusion of each task, the

updated weights, memory allocations, and regularization parameters are stored for use in the

following iteration to allow the model to learn efficiently. The AMUM Integration Module

achieves a balanced update on the model by retaining important knowledge of previous tasks

and learning additional information, thereby solving the problems of catastrophic forgetting

and memory overload in continual learning.

F. The Output Layer

The final stage is the Output Layer of the Adaptive Memory Update Mechanism (AMUM)

framework which pushes out the processed and optimized model parameters. This layer

guarantees that the new information has been, in fact, efficiently combined with the prior

knowledge retained from previously trained tasks by the updated model. The Output Layer thus

validates and integrates outputs from the Dynamic Memory Allocation Unit (DMAU) and the

Adaptive Regularization Module (ARM) to serve as allocations and updates to the memory and

regularization parameters of the model functioning.

Fig 7. Output Layer Process Flow in the Adaptive Memory Update Mechanism (AMUM)

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 376

Figure 7 illustrates the process flow of the Output Layer within the Adaptive Memory Update

Mechanism (AMUM) framework. The sequence begins with the Input Reception stage, where

the Output Layer acquires updated model parameters 𝑊′ = {𝑤1
′ , 𝑤2

′ , … , 𝑤𝑛
′ } from the Adaptive

Regularization Module (ARM) and memory allocation data 𝑀𝑡+1 from the Dynamic Memory

Allocation Unit (DMAU). These inputs are integrated in the Integration phase to create a single

model state, consistent with changes to the Model defined by the ARM and DMAU. Further,

in the Validation stage, the integrated model is evaluated with accuracy and loss computed on

a validation dataset containing tasks that have already been learnt and new tasks in order to

locate the first signs of catastrophic forgetting. Diagnostic metrics are generated in terms of

memory utilization, task specific performance and effect of regularization to view this learning

iteration progress during the feedback Generation phase. Lastly, in the Output Delivery stage,

the validated model parameters are made ready for use (deployment, or follow up training) in

the real world or another learning cycle(s). The Output Layer helps create this structured flow

which forestalls the catastrophic forgetting and as a result, this allows for the model to

continuously learn in the AMUM framework. Briefly, we propose an Adaptive Memory

Update Mechanism (AMUM) framework that provides the solution to the aforementioned

challenges of continual learning faced by the system, by incorporating well integrated

components.

IV. The experimental setup and evaluation of text datasets.

We present our experimental setup for the evaluation of the Adaptive Memory Update

Mechanism (AMUM) framework on text datasets in this section. This thesis outlines the choice

of dataset, pre-processing, evaluation metrics, and methods for evaluating the performance of

our proposed system in solving the challenges of catastrophic forgetting, memory optimization

and task adaptability.

A. Dataset Selection

We selected a set of benchmark text datasets covering diverse natural language processing

(NLP) tasks to evaluate AMUM. It tests the framework’s capabilities to handle diverse text-

based tasks and sequential learning and attempts to mitigate the effects of catastrophic

forgetting; these datasets were chosen. The datasets used for the evaluation include, below are

sample entries from four widely used text datasets: Specifically, considered data sets from AG

News, IMDB Reviews, 20 Newsgroups, and Reuters-21578. An example is given for each table

to illustrate the structure as well as the content of the datasets. Table 1 presents a sample from

the AG News dataset, which consists of news articles categorized into four topics: Sports and

Business Reporters Specialized in World, Sports, Business, and Science. The 'Category'

column represents the topic category, the 'Title' column gives the headline, and the 'Description'

column provides a summary of the news article.

Table 1: Sample entry AG News Dataset

Title Description Category

"Oil Prices Soar to

New Highs"

"Global oil prices have surged to unprecedented levels,

impacting economies worldwide."

Business

The IMDB Reviews dataset (reviewed in the next section) is a dataset of movie reviews labelled

positive or negative according to sentiment, and Table 2 shows a sample from this dataset. It

contains the 'Review Text' column, which contains the text of the movie review, and the

'Sentiment' column, which indicates the sentiment classification.

Table 2: Sample Entry from IMDB Reviews Dataset

Review Text Sentiment

"An outstanding film with a compelling storyline and stellar performances. A

must-watch!"

Positive

As an example, table 3 presents a sample from 20 Newsgroups dataset that is a collection of

messages in 20 different newsgroups used for multi-class text classification tasks. The 'Subject'

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 377

column shows the subject line, the 'Message' column shows the body of the message, and the

'Newsgroup' column gives the newsgroup category of a particular message.

Table 3: Sample Entry from 20 Newsgroups Dataset

Subject Message Newsgroup

"Advancements in AI

Technology"

"Recent developments in artificial intelligence have

led to significant breakthroughs in machine

learning."

comp.ai

A sample from the Reuters-21578 dataset, consisting of news articles labelled with multiple

categories like corporate, government and economy, is tabulated in Table 4. The 'Categories'

column has the categories of articles, for it is a multi-label dataset where a news article can

have multiple categories; the 'Title' and 'Body' columns give the headline and full text of the

news article, respectively.

Table 4: Sample Entry from Reuters-21578 Dataset

Title Body Categories

"U.S. Economy Shows

Signs of Recovery"

"The latest reports indicate a steady recovery

in the U.S. economy, with growth in multiple

sectors."

Economy,

Government

B. Pre-processing and Feature Extraction

Several vital steps were implemented in the Pre-processing and Feature Extraction phase to

prepare the text datasets for integration into the Adaptive Memory Update Mechanism

(AMUM) framework. We first tokenized, i.e., segmented, the text into individual tokens that

could be processed by the model, such as by words or subwords. Then performed stopword

removal to remove commonly used words such as 'the', 'is ', 'in' and other words to reduce the

number of features that the model was focused on and allow it to better focus on the essential

features. Next, applied text vectorization, converting the textual data to numerical

representation, e.g., Term Frequency-Inverse Document Frequency (TF-IDF), Word2Vec, or

GloVe, etc. Converting it enabled the model to process and learn text data. Last but not least,

the performed data splitting (training, validation, test sets) in order to evaluate the model's

ability to learn new tasks sequentially without forgetting the previous functions. Given that the

AMUM framework can handle all text-based tasks, these pre-processing steps were crucial to

ensure that the text data was in the accurate format for modelling and to ensure that the effects

of catastrophic forgetting were mitigated.

C. Evaluation Metrics

To quantify the performance of the Adaptive Memory Update Mechanism (AMUM)

framework in the continual learning scenario, we employ several metrics in our experiments.

Below are the definitions and equations for each metric:

Accuracy (ACC): Accuracy is the percentage of instances that were correctly classified for all

tasks.

ACC =
 Number of Correct Predictions

 Total Number of Predictions
 (10)

Average Forgetting (AF): Average Forgetting is the percentage of the value forgotten on

previous tasks as a result of the new task.

AF =
1

𝑁−1
∑  𝑁−1

𝑖=1 (max
𝑙∈{𝑖,…,𝑁−1}

 𝑎𝑖,𝑙 − 𝑎𝑖,𝑁) (11)

where 𝑎𝑖,𝑗 represents the accuracy on task 𝑖 after learning task 𝑗, and 𝑁 is the total number of

tasks.

Learning Curve Area (LCA): LCA defines the model's learning efficiency with time as the

area under a learning curve.

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 378

LCA = ∫  
𝑇

0
ACC(𝑡)𝑑𝑡 (12)

where ACC(𝑡) is the accuracy at time 𝑡, and 𝑇 is the total training time.

Worst-Case Accuracy (WC-ACC): WCACC evaluates the simplest (in terms of robustness)

of the performances achieved on one or more tasks throughout the learning process.

WC − ACC = min
𝑖∈{1,…,𝑁}

 𝑎𝑖,𝑁 (13)

where 𝑎𝑖,𝑁 is the accuracy on task 𝑖 after learning all 𝑁 tasks.

Training Time per Task: The second metric is the time needed for training the model on

every new task.

Training Time per Task =
 Total Training Time

𝑁
 (14)

where 𝑁 is the number of tasks.

Inference Time: Inference Time corresponds to how long the model needs to make some

predictions on new dates.

Inference Time =
 Total Inference Time

 Number of Inferences
 (15)

Time to Stability: This metric models the duration it takes to force the model's performance

to stabilize after learning a new task.

Time to Stability = 𝑡stable − 𝑡start (16)

where 𝑡start is the time when training on the new task begins, and 𝑡stable is the time when

performance metrics reach a steady state. Collectively, these metrics serve as a thorough

evaluation of the AMUM framework's ability to overcome the challenges that characterize

continual learning, such as knowledge retention, adaptability, learning efficiency, robustness,

and temporal performance aspects.

D. Experimental Methodology

In the experimental methodology, we describe the procedures used to test the performance of

the adaptive memory update mechanism (AMUM) framework using text datasets. The first

step in the evaluation process was the Initial Training phase, where the model was initially

taught a task (for instance, on the AG News dataset) using the DMAU and ARM to control

memory and introduce adaptive regularization. During this second phase, the Sequential

Learning phase, the same model was trained on tasks that were introduced incrementally, i.e.

IMDB reviews and 20 Newsgroups, enabling us to gauge the model's ability to do adaptive

learning and its capability to retain task knowledge and solve new tasks. During this period,

the Memory Allocation (DMAU) and the Regularization strategies were used; the DMAU

allocated memory resources according to task priority, while the ARM preserved critical

knowledge while learning new tasks. In the evaluation phase, the performance of the model

was assessed and addressed in metrics like accuracy, task performance, and memory utilization

at each stage in the sequential process. In the last phase, Analysis, we compared our results

with baseline models that do not incorporate the AMUM framework to measure improvements

in the ability of the models to handle catastrophic forgetting, task performance, and memory

efficiency. The continued learning of the AMUM framework was then measured through a

structured methodology, which allowed for a complete evaluation of performance.

V. Results and Analysis

In this section we describe the results of experiments with the Adaptive Memory Update

Mechanism (AMUM) framework on the selected text datasets. Performance metrics are

analyzed, compared with baseline models, and insights about results are provided through

tables and their descriptions.

Table 5: Performance Metrics on Text Datasets

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 379

Dataset ACC(%) (AF) (LCA)

(WC-

ACC)

(%)

Memory

Utilization

(%)

Training

Time per

Task (s)

Inference

Time (ms)

Time to

Stability

(s)

AG News 93.5 0.05 88.2 91.0 85 120 15 30

IMDB

Reviews

91.2 0.07 86.4 89.5 83 135 18 35

20

Newsgroups

89.8 0.08 84.7 88.0 80 145 20 40

Reuters-

21578

88.6 0.10 83.5 86.5 78 160 22 45

The performance metrics of the AMUM framework are presented on four datasets in the table

5. Accuracy means the degree to which classifications are correct while Average Forgetting

(AF) is the reduction in performance on previously learned tasks. The Learning Curve Area

(LCA) represents the learning efficiency over time for the framework in terms of its

adaptability. Accuracy with Robustness: Worst-Case Accuracy (WC-ACC) signifies the worst

performance on any task. Console also shows the percentage of allocated memory that is being

effectively used as indicated under Memory Utilization. Training Time per Task indicates the

time for training on each dataset in turn. Inference Time is the time needed for the model to

create predictions on a new data. Time to Stability measures the time taken before the model's

performance stabilizes after it has learnt a new task.The Figure 8, the bar graph shows the

Accuracy (%) for four text datasets: AG News classification accuracy of 93.5%, IMDB

Reviews of 91.2%, Newsgroups of 89.8%, and the Reuters-21578 dataset of 88.6%. Results

indicate high Accuracy when using AG News, IMDB Reviews, 20 Newsgroups, and finally,

Reuters-21578. These disparities are due to models’ performances on given datasets.

Fig 8. Accuracy across Text Dataset

The Figure 9 bar graph illustrates the Average Forgetting (AF) metric across four text datasets:

20 Newsgroups, Reuters 21578, IMDB Reviews, and AG News. There is a Y-axis for Average

Forgetting drawing from 0 to 0.12 and an X-axis with dataset names. It displayed the precise

value on top of each bar for clarity, and each bar represents the Average Forgetting of a dataset.

A lower average Forgetting of 0.05 is observed for the dataset AG News, showing minimal

forgetting during model training. Average Forgetting rates of 0.07 and 0.08 are shown for

IMDB Reviews and 20 Newsgroups. Amongst all the benchmark datasets we used, the highest

Average Forgetting value is achieved by the Reuters-21578 dataset, where its value is as high

as 0.10, which implies there exists a relatively higher degree of forgetting.

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 380

Fig 9. Average Forgetting (AF) across Text Datasets

The Figure 10 graph represents the Learning Curve Area (LCA) metric across four text

datasets: Datasets include AG News, IMDB Reviews, 20 Newsgroups, and Reuters-21578. The

Learning Curve Area values are plotted on the Y-axis, and ranges are reduced from 80 to 90

for better visualization with the dataset name on the X-axis. Exact values are displayed

prominently on top of each bar for clarity since each bar represents an LCA value of a dataset.

The dataset with the maximum Learning Curve Area (88.2) is AG News, which exhibits the

best learning performance and stability. The lowest LCA values is found for IMDB Reviews

with 86.4, 20 Newsgroups and Reuters-21578 are 84.7 and 83.5.

Fig 10. Learning Curve Area (LCA) across Text Datasets

The Figure 11 visualizes the Worst-Case Accuracy (WC-ACC) metric for four text datasets:

Using a scatter plot with connecting dashed lines, data are created from IMDB Reviews, 20

newsgroups, Reuters-21578, and AG News. For better clarity, the Worst-Case Accuracy (%)

values are shown in the Y-axis and from 85% to 92% and the names of the dataset are shown

in the X-axis. The marked blue scatter points are WC-ACC values for each dataset and the

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 381

exact percentages are annotated above each point. In addition, the dataset receives the highest

WC ACC with 91.0% followed by IMDB Reviews (89.5%), 20 Newsgroups (88.0%) and

Reuters-21578 (86.5%).

Fig 11. Worst-Case Accuracy (WC-ACC) Across Text Datasets

The Figure 12 represents the Memory Utilization (%) across four text datasets: Datasets include

AG News, IMDB Reviews, 20 Newsgroups, and Reuters-21578. The percentage values of the

memory utilization percentage of a dataset are displayed as percentages for each segment of

the chart. First up, AG News has 85% memory utilization, shown by a slightly exploded

segment on the graph to emphasize the point. 20 Newsgroups and Reuters-21578 have 80%

and 78%, respectively; IMDB Reviews follows with 83%.

Fig 12. Memory Utilization (%) Across Text Datasets (Pie Chart)

The Figure 13 illustrates the Training Time per Task (s) across the four text datasets: We

experiment on two datasets: Reuters-21578 and various spin-offs from it, as well as IMDB

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 382

Reviews and 20 Newsgroups and its variants. The Y-axis displays the Training time in seconds

from 110 to 170 seconds and the X-axis has Data Sets.

The longest training time recorded is 160 seconds for Reuters-21578, 145 seconds for 20

Newsgroups, 135 seconds for IMDB Reviews, and 120 seconds for AG News. Data points are

connected with a line for continuous progression, annotation of exact training time on top of

each point for more clarity.

Fig 13. Training Time per Task (s) Across Text Datasets

The Figure 14 represents the Inference Time (ms) across four text datasets: The data sets were

AG News, IMDB Reviews, 20 Newsgroups, and Reuters-21578. The datasets are shown on

the X-axis and inference time in milliseconds, between 10 to 25 ms, on the Y-axis. For the

REUTS- 21578 dataset the inference time is the highest on 22 ms, followed by 20 Newsgroups

(20 ms), IMDB Reviews (18 ms) and AG News (15 ms). Data points are connected by a smooth

line, the graph shows a signal-like progression. For clarity, each point is annotated with the

exact inference time.

Fig 14. Inference Time (ms) Across Text Datasets

The stacked bar chart demonstrates the Time to Stability (s) metric for four text datasets: The

figure 15 shows that our model is more accurate in classifying AG News, IMDB Reviews, 20

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 383

Newsgroups, and Reuters-21578. The time to stability ranges from 25 to 50 seconds depending

on the position and is depicted on the Y-axis below. The name of the datasets are shown over

the X-axis. Each of the datasets in the chart is painted with a different hue of blue for better

retrievability. The rightmost vertical axis denotes the exact numbers of the time taken by each

of the datasets to reach the stability state and has been indicated at the peak of each bar. From

the chart it is evident that Reuters-21578 is the corpus that takes the longest time to reach a

stable state at 45 seconds, the corpus 20 Newsgroups is second at 40 seconds. It is needed 35

seconds to reach stability in IMDB Reviews data and AG News has the lowest time to stability

30 seconds.

Fig. 15 Time to Stability (s) Across Text Datasets

B. Comparison with Baseline Models

Table 6: Comparative Analysis with Baseline Models

Metric AMUM Framework EWC ER RAR

Average Accuracy (%) 90.8 85.3 84.6 88.2

Average Forgetting (AF) 0.07 0.20 0.22 0.12

Learning Curve Area 85.7 80.2 79.5 83.0

Worst-Case Accuracy (%) 88.0 82.5 81.8 86.0

Memory Utilization (%) 82 68 65 75

Training Time (s) 140 120 115 130

Inference Time (ms) 19 17 16 18

Time to Stability (s) 37 45 50 40

Table 6 presents a comparative analysis of the Adaptive Memory Update Mechanism (AMUM)

framework against three baseline models: Elastic Weight Consolidation (EWC), Experience

Replay (ER), and Repeated Augmented Rehearsal (RAR). Multiple performance metrics

related to continual learning tasks are used as a basis for comparison.

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 384

Fig 16. Average Accuracy Comparison of Models

The bar chart titled "Average Accuracy Comparison of Models" illustrates the performance of

four models: AMUM Framework, EWC, ER, and RAR, based on their average accuracy

percentages as shown in the figure 16. Each model is represented by a distinct color for easy

differentiation and comparison. The AMUM Framework achieves the highest accuracy at

90.8%, demonstrating its superior effectiveness over the other models. Following this, RAR

achieves an accuracy of 88.2%, reflecting competitive results in performance. Meanwhile,

EWC and ER show slightly lower accuracies of 85.3% and 84.6%, respectively.

Fig 17. Average Forgetting Comparison with base modes

The line chart titled "Average Forgetting Comparison with Base Models" from the figure 17

provides a clear visualization of the Average Forgetting (AF) values for four models: EWC,

ER, RAR and AMUM Framework. The comparisons show how well each model keeps prior

tasks learned as it goes along. The AMUM Framework has least forgetting with 0.07 AF and

therefore, it represents better ability to retain learned information. Next, RAR obtains a

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 385

moderate AF value 0.12, indicating that it improves at retaining prior knowledge. However,

EWC and ER have higher forgetting rates as measured by AF values of 0.20 and 0.22,

respectively, failing to realize continual learning.

Fig 18. Learning curve area comparison with base model

The scatter plot titled "Learning Curve Area Comparison of Models" from the figure 18

provides a clear visualization of the Learning Curve Area (LCA) for four models: AMUM

Framework, RAR, EWC, and ER. A green data point represents each model, and is connected

by a dashed line to imply continuity. From the models, the AMUM Framework produces the

highest LCA value (LCA value of 85.7) and proves to be the best on this metric. Next, RAR

reports a relatively competitive LCA of 83.0 followed by further low values of 80.2 and 79.5

for EWC and ER, respectively.

Fig 19. Worst Case Accuracy (%) Comparison of Models

Figure 19 shows a bar chart for a models' worst-case accuracy 'Worst Case Accuracy (%)

Comparison of Models'. This is, therefore, a measure of the models' reliability in the worst

case. The AMUM Framework scores the highest worst case accuracy at 88.0% across all

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 386

baseline models and is the most robust model. Next, the RAR model runs with a value of

86.0%. EWC and ER obtain lower worst case accuracy of 82.5% and 81.8%, respectively,

suggesting their relative lack, with respect to the proposed method, in worst case performance.

Fig 20. Memory Utilization (%) Distribution across Models

The pie chart titled "Memory Utilization (%) Distribution across Models" from the figure 20

illustrates the percentage of memory utilized by four models: This framework, along with an

introduction to EWC, ER, and RAR, is presented in this chapter. Our AMUM Framework

shows the best memory utilization of 82%, reflecting its good processing and storage

capability. A small break has been put to emphasize its significance. Our second model, the

RAR model, follows with memory utilization of 75%, indicating very good resource use.

Conversely, EWC and ER require relatively lower memory utilization (68% and 65%

respectively).

Fig 21. Comparison of Training Time, Inference Time, and Time to Stability across Models

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 387

The bar chart titled "Comparison of Training Time, Inference Time, and Time to Stability

Across Models" from the figure 21 compares the performance of four models—AMUM

Framework, EWC, ER, and RAR—across three critical metrics: Three metrics are used for

training: Time to Stability (s); Inference Time (ms); and Training Time (s). We observe that

AMUM Framework has the longest training time at 140 seconds, and ER has the shortest at

115 seconds, followed by EWC (120 seconds) and RAR (130 seconds). On inference time the

AMUM Framework records 19 ms, slightly more than RAR at 18 ms, while EWC and ER have

better performance at 17 ms and 16 ms respectively. The AMUM Framework offers the fastest

time to stability moving forward in an average of 37 seconds, followed by RAR with 40

seconds. Whereas times of 45 seconds and 50 seconds are required for EWC and ER. The

combination of this visualization in coordination with the different tensor flow models makes

it very effective in drawing out the trade offs between training efficiency, inference speed and

stability across these models.

Overall, AMUM Framework shows an advantage over the baselines in Average Accuracy,

Average Forgetting, Learning Curve Area, and Worst Case Accuracy, indicating significantly

better retention of previously learned tasks whilst learning new tasks efficiently. Compared

with AMUM, AMUM requires a slightly slower training and inference time; however, the large

gains in accuracy and memory utilization are well justified by the increased computational

overhead. Comparing to base lines, the AMUM framework exhibits faster times to stability

according to the Time to Stability metric.

C. Task-Wise Performance

Table 6: Task-Wise Accuracy Across Sequential Learning

Task

Sequence

AG News

(%)

IMDB Reviews

(%)

20 Newsgroups

(%)

Reuters-21578

(%)

Task 1 93.5 - - -

Task 2 92.8 91.2 - -

Task 3 91.7 90.8 89.8 -

Task 4 90.9 89.9 88.6 88.6

As new tasks are sequentially introduced, the table 6 shows the task wise accuracy. We find

the time to solve each task is increasing as the framework progresses through older tasks, but

the Average Forgetting (AF) metric is low, demonstrating good retention of learned tasks. The

reliability indicates that the framework maintains relative robustness to deal with continual

learning.

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 388

Fig 22. Performance across Datasets for Task Sequence

The node link diagram “Task Sequence Performance across Datasets” figure 22 displays the

accuracy in performing a task, alongside the dataset it was performed on. The graph comprises

two types of nodes: depicts tasks (light blue) and datasets (light green). The accuracy

percentages are shown as edge labels representing the edges between nodes that represent tasks

and datasets. Task 1 works only with the AG News dataset, which reaches 93.5% accuracy.

Task 2 consists of both the AG News and the IMDB Reviews datasets to be trained, with both

resulting in 92.8% accuracy and 91.2%. Task 3 also uses an additional dataset, 20 Newsgroups,

with 91.7%, 90.8% and 89.8% accuracies for AG News, IMDB Reviews and 20 Newsgroups,

respectively. And finally in Task 4 we report accuracies on all four datasets, including 90.9%,

89.9%, 88.6% and 88.6% for AG News, IMDB Reviews, 20 Newsgroups, and Reuters-21578

respectively. Personally I think the visualization effectively shows how the tasks progress and

perform across the datasets and brings out the interconnected structure of the task sequence

and the relationship between the datasets.

Experimental evaluation shows that the AMUM framework can effectively handle sequential

text based tasks and obtain superior performance compared to both traditional and recent

baseline models under various evaluation metrics. Experiments demonstrate its robustness, and

its ability to mitigate catastrophic forgetting, optimize memory usage and maintain high task

accuracy in continual learning challenges. However, these results also demonstrate the ability

of AMUM to be deployed in real world applications requiring online task adaptation and

efficient resource allocation.

VI. Discussion

We end by discussing the implications of these results, the strengths of the Adaptive Memory

Update Mechanism (AMUM) framework, and where the framework could be improved. We

further discuss the potential applications of AMUM in the real world and outline future

challenges and directions of continual learning systems.

A. Implications of Results

The AMUM is demonstrated to effectively handle the key challenges in continual learning,

such as catastrophic forgetting, memory optimization, and task adaptability, and the results are

presented. AF values are kept low average (AF) indicating the framework’s ability to retain the

knowledge of previous tasks when new tasks are 'slotted in'. The robustness and adaptability

of the framework is shown to be maintained with high accuracy across sequential tasks in a

diverse and dynamic environment. This further validates the design of AMUM through a

comparison of the advantage of AMUM over traditional (EWC, ER) and recent (RAR) baseline

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 389

models. AMUM integrates dynamic memory allocation and adaptive regularization, and

achieves better task retention and memory efficiency, which are vital for scalable and

sustainable learning in real world applications.

B. Strengths of AMUM Framework

The AMUM framework has emerged with several important strengths that lead to its

effectiveness in continual learning. Dynamic Memory Allocation Unit (DMAU) supports

efficient dynamic allocation of memory, and also makes intelligent choices in terms of which

tasks are allocated memory in order to avoid memory overload. What’s more, the Adaptive

Regularization Module (ARM) stabilizes critical model weights to minimize task interference

and dramatically decrease the chance of catastrophic forgetting. The framework adopts

modular design, facilitating scalability and ease of integration with existing machine learning

pipe lines and adaptability to a varying spectrum of complexity in tasks that can be handled. In

general, AMUM demonstrates high performance with high accuracy and task retention even in

sequential and varied data sets.

C. Applications of AMUM Framework

The adaptability and efficiency of AMUM framework shall fit to different applications in

various domains. Tasks such as sentiment analysis, topic modelling, and text classification are

addressed by Natural Language Processing (NLP), when datasets evolve. In the healthcare

space AMUM can dynamically tune to new medical data such as patient records, diagnostic

imaging, and treatment protocols. AMUM can be used to enable real time learning and decision

making in dynamic environments by autonomous systems such as robotics and IoT devices.

Additionally, this framework can be used in the financial industry to build emergency adaptive

fraud detection and risk management systems that feed on fast changing transactional data.

AMUM details these applications as examples of how AMUM can serve to transform dynamic

learning systems in real world settings.

E. Challenges and Future Directions

Although the AMUM framework has its strengths, there are also some challenges and

opportunities for improvement. There is the challenge of computation overhead as training and

inference times are slightly heavier, pointing to the potential further optimization in dynamics

allocation of memory and in regularization processes. Furthermore, the framework currently

utilizes static task prioritization metrics such as recency and complexity which hinders its

capacity to dynamically adapt to context aware and temporal dynamics. Future work may

include integrating mechanisms for continual learning. Another promising direction for

extending the framework is to deal with multi modal data (e.g., text, images, audio combined).

Last, it is crucial to validate the framework on real‐world environments where data are noisy

and unstructured to evaluate how scalable and robust the framework would be for use in the

practical applications.

VII. Conclusion

In this paper, we propose AMUM to deal with the challenges of continual learning in text based

tasks. The framework integrates task, dynamic memory allocation, and adaptive regularization

to ensure task efficient learning, robust more performance and effective knowledge retention.

We show that through experimental results, AMUM is able to effectively mitigate catastrophic

forgetting, optimize memory utilization, and achieve high task accuracy, better than existing

baseline and recently proposed models. The framework's contributions involve (1) dynamic

task management via the Task Priority Evaluation Unit (TPEU), (2) efficient memory usage

through the Dynamic Memory Allocation Unit (DMAU), and (3) knowledge preservation by

the Adaptive Regularization Module (ARM). Collectively, this increases the scalability and

robustness of the framework, allowing these tasks to be handled sequencially across a variety

of data sets. We observe that AMUM achieves a balance between stability (knowledge

retention) and plasticity (capability to adapt to new information), rendering it a promising

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 390

option for deployment in many real world applications including natural language processing,

healthcare, autonomous systems, and finance. The module design is modular enough to scale

and adapt to the changing tasks. In future work, we intend to reduce computational overhead,

incorporate context and temporal dynamics, and extend the framework to deal with multi-

modal datasets. In real world environments with noisy and unstructured data, further validation

of the scalability and robustness of this approach that deploys AMUM, will be conducted.

Finally, we summarize the AMUM framework as a promising approach for continual learning

in dynamic learning scenarios, which is scalable and efficient in its configuration. As AMUM

continues to be refined and validated, it has the potential to transform learning systems into AI

driven applications.

VIII. References

1. Szegedy, Balázs, Domonkos Czifra, and Péter Kőrösi-Szabó. "Dynamic Memory Based

Adaptive Optimization." arXiv preprint arXiv:2402.15262 (2024).

2. Yao, Xuanrong, Xin Wang, Yue Liu, and Wenwu Zhu. "Continual recognition with

adaptive memory update." ACM Transactions on Multimedia Computing,

Communications and Applications 19, no. 3s (2023): 1-15.

3. Zhang, Chaoyun, Zicheng Ma, Yuhao Wu, Shilin He, Si Qin, Minghua Ma, Xiaoting Qin

et al. "AllHands: Ask Me Anything on Large-scale Verbatim Feedback via Large

Language Models." arXiv preprint arXiv:2403.15157 (2024).

4. Weng, Weikang, Alexandru Uta, and Jan S. Rellermeyer. "Brug: An Adaptive Memory

(Re-) Allocator." In 2024 IEEE 24th International Symposium on Cluster, Cloud and

Internet Computing (CCGrid), pp. 67-76. IEEE, 2024.

5. Koutras, Ioannis, Alexandros Bartzas, and Dimitrios Soudris. "Adaptive dynamic memory

allocators by estimating application workloads." In 2012 International Conference on

Embedded Computer Systems (SAMOS), pp. 252-259. IEEE, 2012.

6. Li, Guiji, Manman Peng, Ke Nai, Zhiyong Li, and Keqin Li. "Multi-view correlation

tracking with adaptive memory-improved update model." Neural Computing and

Applications 32, no. 13 (2020): 9047-9063.

7. Elenter, Juan, Navid NaderiAlizadeh, Tara Javidi, and Alejandro Ribeiro. "Primal-Dual

Continual Learning: Stability and Plasticity through Lagrange Multipliers." arXiv preprint

arXiv:2310.00154 (2023).

8. Kumar, Ankit, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan

Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. "Ask me anything:

Dynamic memory networks for natural language processing." In International conference

on machine learning, pp. 1378-1387. PMLR, 2016.

9. Xiong, Caiming, Stephen Merity, and Richard Socher. "Dynamic memory networks for

visual and textual question answering." In International conference on machine learning,

pp. 2397-2406. PMLR, 2016.

10. Tewari, Ambuj, and Peter L. Bartlett. "On the Consistency of Multiclass Classification

Methods." Journal of Machine Learning Research 8, no. 5 (2007).

11. Kirkpatrick, James, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume

Desjardins, Andrei A. Rusu, Kieran Milan et al. "Overcoming catastrophic forgetting in

neural networks." Proceedings of the national academy of sciences 114, no. 13 (2017):

3521-3526.

12. Goodfellow, Ian J., Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. "An

empirical investigation of catastrophic forgetting in gradient-based neural networks."

arXiv preprint arXiv:1312.6211 (2013).

J. Ranjith1* and Dr. Santhi

Baskaran2

ADAPTIVE MEMORY UPDATE MECHANISM FOR

MITIGATING CATASTROPHIC FORGETTING AND

OPTIMIZING MEMORY UTILIZATION IN TEXT-BASED

CONTINUAL LEARNING

Cuest.fisioter.2025.54(1):363-391 391

13. Vettoruzzo, Anna, Joaquin Vanschoren, Mohamed-Rafik Bouguelia, and Thorsteinn

Rögnvaldsson. "Learning to learn without forgetting using attention." arXiv preprint

arXiv:2408.03219 (2024).

14. Sharma, Mehul, Shrid Pant, Priety Yadav, Deepak Kumar Sharma, Nitin Gupta, and

Gautam Srivastava. "Advancing security in the industrial internet of things using deep

progressive neural networks." Mobile Networks and Applications 28, no. 2 (2023): 782-

794.

15. Kowadlo, Gideon, Abdelrahman Ahmed, and David Rawlinson. "One-shot learning for

the long term: consolidation with an artificial hippocampal algorithm." In 2021

International Joint Conference on Neural Networks (IJCNN), pp. 1-7. IEEE, 2021.

