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I. INTRODUCTION 

Internet of Things (IoT) constitutes a network of heterogeneous devices communicating and exchanging 

data amongst themselves to provide smarter services to users [1]. The field of IoT has been witnessing increased 

research and development in several application areas. Smart home appliances and infrastructure, smart security 

and surveillance, smart road traffic management and medical emergency response systems are a few examples 

of IoT network’s use cases. IoT networks are enormous in scale and complexity, and comprise objects like 

Radio Frequency Identification (RFID) tags, mobile phones and sensing devices to obtain data from the 

environment. Such devices, also referred to as sensor nodes, have low compute capability and limited battery 

life. The existing routing protocols for Wireless Sensor Networks (WSNs) [2] are complex in nature and 

demand a considerable use of processing power and memory which are scarce resources in the devices 

comprising an IoT network. There is hence, a need for simpler protocols that are able to efficaciously conserve 

the energy of the devices. For an energy efficient network, and especially one that involves cooperative devices, 

it becomes important to distribute the processing load of routing evenly amongst all devices in the network. This 
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significant tasks. Wireless sensor networks (WSNs) significantly advance the IoT by serving as a permanent 

layer. The majority of IoT applications use WSNs as their foundation. IoT-based sensor networks must solve 

serious general and specialized risks and technical obstacles to ensure adoption and dissemination. In modern IoT 

deployments, maintaining energy-efficient, reliable, and adaptive network performance is essential but 
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Software-Defined Network (SDN) augmented by Reinforcement Learning (RL) algorithms with Dynamic 

Objective Selection (DOS-RL) agent and Bayesian optimization (BO) for hyperparameter tuning. The IoT data 
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ensures that a larger number of devices will remain operational for extended periods of time. On the contrary, if 

this processing load attributed to routing, is subjected to only a subset of the devices in the network, then this 

subset of devices would consume their energies at a faster rate and hence run out of battery sooner than the rest 

of the network. The proposed routing protocol in this paper aims to solve this problem by distributing the 

routing effort which in turn guarantees increased operational time of the network. The working of the protocol is 

detailed in later sections. Moreover, it must be noted that the term node and device both refer to the sensor 

nodes in the IoT network and have been interchangeably used in the text [3]. 

Apart from the sensor nodes, IoT networks also utilize base stations which are centers for data processing 

and storage. Base stations are more powerful as compared to the sensor nodes and hence come at a higher price. 

These are used in order to access network data and analyze it. There can be several models of IoT networks 

depending on the number of base stations used. For simulation of the proposed protocol, only a single base 

station is used as an end destination for the network data. The aim of the proposed protocol thus translates into 

finding an optimal energy-efficient path from the sensor nodes to the base station. Moreover, the protocol has to 

effectively minimize the energy expenditure of devices in the network and increase the network’s operational 

lifetime. 

To meet the application-specific requirements of the IoT in real-time, the energy cost for transmission poses 

a challenge in IoT applications and should be thoroughly considered [4]. IoT-based wireless sensors are 

deployed in computationally demanding and energyconstrained environments, necessitating the exploration of 

solutions that enable the prolonged operation of wireless sensor nodes without requiring battery replacements or 

location changes [5]. Among the various tasks performed by such nodes, data transmission emerges as the most 

energy-intensive, followed by others such as route computation, idle listening for potential incoming traffic, and 

data processing [6]. As a result, the development of effective routing protocols that identify optimal routes for a 

successful data transfer with acceptable energy consumption is critical for enhancing the overall performance of 

IoT-oriented WSNs. Despite the significant number of existing routing protocols in the literature, it is worth 

noting that current solutions are relatively limited in their ability to address the energy efficiency challenges of 

IoT-oriented WSNs. However, the integration of emerging networking technologies, such as Software-Defined 

Networks (SDN), into wireless sensor networks has shown promising results in the development of effective 

energy-efficient schemes. By removing energy-consuming tasks such as routing, data processing, and network 

management from the physical wireless nodes, the SDN has transformed them into data forwarding entities, 

significantly reducing their energy consumption [7]. The SDN architecture, with its centralized management 

approach that separates control logic from network devices, eliminates distributed operations and provides a 

holistic view of the network, better reflecting the actual network conditions. Leveraging its ability to collect 

comprehensive network information and create a global network view, the SDN architecture has facilitated the 

introduction of new optimization techniques, such as artificial intelligence and machine learning (ML) 

algorithms capable of solving complex problems [8]. 

The core challenge in applying Reinforcement Learning (RL) algorithms with Dynamic Objective Selection 

(DOS-RL) to IoT-based SDWSN environments lies in effectively learning policies that balance multiple, often 

conflicting objectives under dynamic and resource-constrained conditions. In practice, IoT networks face 

fluctuating topologies, limited energy supplies, and diverse Quality of Service (QoS) requirements, all of which 

must be addressed simultaneously. Traditional RL methods often optimize a single or static set of objectives, 

making them ill-suited for environments where priorities shift over time (e.g., from energy efficiency to latency 

reduction as network conditions change). DOS-RL attempts to resolve this by dynamically prioritizing 

objectives—such as energy minimization, network reliability, and throughput—but this multi-objective learning 

process introduces complexity. The RL agent must discern the interplay among correlated metrics, adapt its 

objectives in response to sudden network changes, and learn stable policies despite the frequent recalibration of 

goals. This complexity can slow convergence, increase computational overhead, and pose difficulties in 

ensuring the optimal long-term performance and reliability of IoT networks. Introduce adaptive weighting 

schemes that automatically adjust the importance of objectives based on real-time feedback from the network. 

For example, employing meta-learning or Bayesian optimization methods could help the RL agent more quickly 
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identify the most critical objectives at any given time and update their relative weights accordingly, ensuring 

that learning remains focused on the most impactful goals. The contribution of the research work is described as 

follows  

1. The IoT network (data plane) continuously operates, collecting data and transmitting it through the 

network. 

2. Real-time feedback (network conditions, QoS metrics) is sent upward to the control plane. 

3. The DOS-RL agent integrated with Adaptive Weighting Mechanisms (Bayesian optimization) 

processes this feedback, dynamically selects objectives, and updates its routing policy to better meet 

current network demands. 

4. The SDN controller then enforces these updated routing decisions on the IoT devices, ensuring energy-

efficient and high-performing network operation. 

5. This closed-loop process repeats, allowing for continuous adaptation to sudden network changes and 

long-term performance optimization. 

II. RELATED WORKS 

In [9], for instance, the authors proposed a block chain-SDN-based allocated design for NFV-enabled smart 

cities. In addition, the authors presented an energy optimized group leader determination method that can 

efficiently select a group leader. As an added bonus, the SDN controller manages and monitors how the IoT 

components function. In this study, we use block chain technology to locate and counteract cyber-attacks on 

Internet of Things (IoT) infrastructure. In regards to throughput, time, fuel usage, and communication overhead, 

the test results show that the suggested architecture performs better than the existing structure. Distribution-

based routing techniques, which make use of the network's topology to route packets, are notoriously inefficient. 

Since the overhead of centralized algorithms is low, and the chance of route failure is also low, they are 

advantageous.  

In [10], a smart routing system for IoT-enabled WSNs is proposed using Deep Reinforcement Learning 

(DRL), which helps to drastically cut down on delay while simultaneously increasing the network's lifetime. 

The proposed method divides the network into uneven clusters according to the data transfer in each sensor, thus 

significantly extends the network's lifespan. The experimental outcomes show that the proposed strategy is 

effective in terms of network throughput, energy efficiency, delay in communication, and the percentage of 

living nodes. A multilayer SDN-based system [11] is proposed to speed up data monitoring & load balancing 

across IoT devices in a local region and across network clusters. The proposed architecture safeguards against 

the controller becoming a bottleneck and it facilitates the use of various management & load balancing 

mechanisms in a hierarchy and multi-step setting. Experimental findings showed that their technique enhanced 

processing performance by decreasing average turnover and waiting times. The proposed method also optimizes 

the utilization of network resources by distributing jobs uniformly across the system. The software-defined 

sensor network was created when SDN & WSN were fused to create a more resilient system, and then in [12] a 

fuzz route discovery protocol was proposed to solve the problem of wasted energy in a WSN setup. (SDWSN). 

The FTDP is used in the SDWSN architecture to determine which new hop is optimal given the residual power 

(RP), node price (NP), Amount of nearest neighbors (NN), & queue Extent (QE). The sink in algorithm is fed 

details about the network's nodes and the deciding factors. After that, the data is sent to the controller, who then 

makes the next move based on the data and a fuzzy system.  

In [13], the authors zeroed in on a service called SDN Based On load Balancing (SBLB) that takes into 

account both the response time and resource utilization of cloud server customers. The components of SBLB are 

an application module, a software-defined-networking (SDN) controller and server farms talking to one another 

through switches and routers with SDN functionality. There are other sub-modules within the program itself, 

including active load balancing, observing, & service categorization. All incoming communications are 

processed instantly, and the controller also oversees the pool of available hosts. The algorithm cuts down on 

typical response and reply times, as well. 
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As described in [14], Hybrid Cloud Trying to offload is set up, in which the jobs connected by advanced tasks 

are delegated to the servers, & the answers are then returned to related elements. This is an innovative approach 

for complex IoT applications, as it allows the IoT node to offload work to the most suitable fog node or cloud, 

depending on application needs and local fog node availability. Nodes' ability to offload work to each other or 

the cloud computing helps to distribute the workload and improves the state of affairs. A Markov Decision 

Processes model is used to describe the issue (MDP). In addition, a Q-learning dependent approach is 

introduced for resolving the system and picking the best offloading strategy. The proposed method has been 

shown to perform better than existing approaches in terms of time, number of tasks executed, and load balancing 

in numerical simulations. Network congestion can be reduced through careful management of traffic flows, as 

suggested in [15], which proposes an Admission Method Of control (Opt-ACM) based on optimum load 

balancing. An MILP-based optimization problem is developed, and the effectiveness of Opt-ACM is verified by 

running it via the popular mathematical optimization solver, Gurobi. In [16], we see the proposal of a 

revolutionary Economical SDN-Based Wireless Sensor Infrastructure (ESD-WSN) that utilizes SDWSN and the 

Internet of Things (IoT) using proxy. Proxy nodes with a lot of processing power are picked to handle control 

traffic & data aggregation. Multiple rounds are used to select proxies, with the resulting node taking on some of 

the controller's duties. For Internet of Things (IoT) applications across wireless mesh networks, a new routing 

mechanism based on clustering has been presented in [16]. Message exchange rates are kept low by using the 

cluster head nodes as well as the relay node in this approach. The relay can facilitate conversations across 

different clusters. In order to cut back on power usage, the authors of [17] suggest cutting down on the size and 

number of elements in the flow table. As part of this technique, only highly probable flow entries are kept in the 

table, while the rest are discarded. The Hidden Markov Models will purge the flow table of entries if there are 

none that correspond during a given time period (HMM).  

In [18], a novel architecture for efficient routing called Quality-of-Service-based Routing Protocol with 

Software-Defined Features of the input less Entity (QSDNWISE) is presented. Because of the high power 

requirements of individual nodes, this design makes extensive use of clusters or cluster - head arranged in a 

dense cluster around the sink. The method executes separate route for each type of data by dividing them apart. 

Furthermore, several studies have explored the application of machine learning algorithms in finding 

optimal data transfer routes within SDN-based network architectures for the SDWSN. For instance, a study [19] 

introduced an intelligent architecture for selflearning control strategies in software-defined networks by 

proposing a routing scheme based on deep reinforcement learning (DRL). This scheme, known as NetworkAI, 

utilizes deep reinforcement learning techniques and leverages network monitoring technologies like inband 

network telemetry to dynamically generate control policies, leading to nearoptimal decision-making. Similarly, 

in [20], the authors presented a scheme to optimize the routing path in the SDWSN using the Reinforcement 

Learning (RL) algorithm. Their approach incorporates energy efficiency and network Quality-of-Service (QoS) 

parameters into the reward function. The proposed routing scheme compares various SDN-based techniques, 

including the traditional SDN, energy-aware SDN (EASDN), QR-SDN, TIDE, as well as non-SDN-based 

techniques such as Q-learning and RL-based routing (RLBR). The results indicate that the RL-based SDWSN 

outperforms other approaches in terms of the network lifetime and packet delivery ratio. In this research work 

introduces a routing scheme that aims to enhance the capabilities of SDWSN-IoT by integrating deep learning 

techniques, leveraging the inherent features of SDWSN-IoT such as network programmability and 

comprehensive topology monitoring. The proposed framework facilitates dynamic learning and the adaptation to 

network changes, enabling the proactive installation and continuous updating of routes based on rapidly 

changing link states, thereby ensuring that swift and efficient routes are found for data forwarding. 

III. PROPOSED METHODOLOGY 

This paper presents a closed-loop; SDN-driven architecture augmented by a Deep Online Scheduling 

Reinforcement Learning (DOS-RL) agent and Bayesian optimization for hyperparameter tuning is presented in 

figure 1. The proposed system dynamically adjusts routing strategies to optimize correlated objectives, including 

energy consumption, latency, and delivery ratio. 
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Figure 1: Proposed Methodology Flow 

The system diagram consists of the following interconnected component are shown in figure 2: 

• IoT Data Plane: Includes sensor nodes, local gateways, and monitoring systems. 

• SDN Controller (Control Plane): Centralized decision-making and policy application. 

• DOS-RL Agent: Decision-making module with dynamic objective selection. 

• Bayesian Optimization Module: Hyperparameter tuning and performance feedback. 

• Feedback Loop: Continuous data flow between the IoT network and SDN controller. 
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Figure 2: Proposed Interconnected Diagram 

To design a network architecture that integrates the AIoT data plane (with sensor nodes, local gateways, and 

monitoring systems), the SDN controller (control plane) for centralized decision-making, and the DOS-RL 

routing scheme, we need to consider the roles and interaction of each component in a cohesive framework. This 

setup allows the network to dynamically adapt to real-time conditions using reinforcement learning and 

intelligent control through SDN. 

A. vIoT Data Plane: Includes sensor nodes, local gateways, and monitoring systems. 

The AIoT data plane is responsible for the physical network infrastructure, consisting of sensor nodes, local 

gateways, and monitoring systems. These components are responsible for collecting data, transmitting it, and 

potentially acting on certain routing decisions before the data reaches the SDN controller. 
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Components of the AIoT Data Plane: 

Sensor Nodes: 

1. These are the edge devices that collect real-time data from the environment (e.g., temperature, 

humidity, energy consumption, traffic, etc.). 

2. Sensor nodes are typically energy-constrained and need to minimize energy consumption 

while maximizing data collection and transmission efficiency. 

Local Gateways: 

1. Gateways aggregate data from multiple sensor nodes, process it locally, and forward 2it to the 

SDN controller. 

2. They may handle some routing tasks to reduce the load on the controller by performing local 

decisions based on high-level policies. 

Monitoring Systems: 

1. These are responsible for monitoring network conditions and the performance of IoT nodes 

and gateways (e.g., packet loss, delay, energy consumption). 

2. They collect feedback from the data plane and report it back to the SDN controller for further 

policy adjustments. 

AIoT Data Plane Workflow: 

• Sensor nodes continuously collect data and report it to local gateways. 

• Local gateways may preprocess the data and send summaries or aggregated data to the SDN controller. 

• Monitoring systems track the network conditions (e.g., congestion, latency, energy use) and relay this 

information back to the SDN controller to provide real-time status updates. 

B. SDN Controller (Control Plane): Centralized decision-making and policy application. 

The SDN controller serves as the brain of the network, responsible for centralized decision-making, policy 

generation, and application. The SDN controller manages the control plane and communicates with the data 

plane (sensor nodes, gateways, and monitoring systems). 

Functions of the SDN Controller: 

Centralized Decision Making: 

o The SDN controller receives real-time metrics from the data plane (IoT nodes, gateways, and 

monitoring systems). 

o It processes these metrics to make high-level decisions about network behavior, such as 

optimizing routing, managing congestion, or deciding when to reroute traffic. 

Policy Application: 

o The SDN controller generates routing policies based on the DOS-RL agent's decisions (using 

reinforcement learning). 

o It pushes these policies to the data plane for execution. The policies can include routing tables, 

QoS (Quality of Service) parameters, and energy management instructions. 



Mrs. M. Senthamil Selvi, Dr. L. Sudha Adaptive and Energy-Efficient IoT Routing via DOS-RL with 

Bayesian Hyperparameter Tuning in SDN-Driven Architectures 

 

 
 

Cuest.fisioter.2025.54(3):173-192                                                                                                                           180 
 

Dynamic Policy Adjustment: 

o The controller continuously adjusts policies based on feedback from the monitoring systems. 

If performance metrics like energy, latency, or packet loss deteriorate, the controller may 

trigger policy updates to improve the network’s performance. 

Monitoring and Feedback Loop: 

o The controller continuously monitors the feedback from the AIoT data plane and uses 

Bayesian Optimization (BO) to fine-tune the DOS-RL agent's hyperparameters for better 

routing decisions. 

SDN Controller Workflow: 

• Collect network data from the AIoT data plane (sensor nodes, gateways, and monitoring systems). 

• Use the DOS-RL agent to evaluate the network state and decide on optimal routing actions. 

• Apply these routing decisions as network policies and push them to the data plane. 

• Continuously monitor performance and adjust policies based on real-time feedback, using BO to 

optimize the DOS-RL agent. 

C. The DOS-RL Routing Scheme  

The realistic conditions of an SDWSN-IoT network are subjected to dynamic changes in resources such as 

battery capacity, CPU capacity, memory, and bandwidth, as well as link quality changes during network 

operation. RL-based routing schemes have demonstrated considerable advantages in designing network 

operation policies that can handle such changes. However, such routing protocols often fail to respond quickly 

enough to such changes. To address this issue, we propose the DOS-RL routing scheme which allows the RL 

agent to learn from multiple correlated objectives simultaneously and to adaptively choose the objective it 

believes is the most promising from the current state. Therefore, we have turned the problem of energy 

efficiency into an RL process by modeling it into a four-tuple(S, A, P, R), defining the states (S), actions (A), 

policy (P), and reward functions (R) of the DOS-RL scheme. 

• The Reward Function (R): In reinforcement learning, the agent evaluates the effectiveness of its 

actions and improves its policy by relying on rewards collected from the environment. The rewards 

obtained are typically dependent on the actions taken, with varying actions resulting in differing 

rewards. To implement the proposed DOS-RL scheme, we define three reward functions, each 

corresponding to one of the correlated objectives: the selection of routing paths with sufficient energy 

for data forwarding (𝑜1), load balancing (𝑜2), and the selection of paths with a good link quality for a 

reliable data transfer (𝑜3). Route selection based on any of these objectives is expected to improve the 

energy efficiency of the IoT network system. Details on each objective of the DOS-RL scheme and its 

related reward functions are provided below:  

i. Energy-consumption: To achieve objective 𝑜1, we consider the energy-consumption parameter, which 

is a critical factor in determining the overall energy efficiency of an SDWSN: for instance, in a 

scenario where node i forwards a packet to node j. The reward received by node i for selecting node j 

as its relay node in terms of energy consumption is estimated by the reward function 𝑅𝐸𝑖,𝑗 for the state-

action pair, (𝑠𝑖  , 𝑠𝑗) as: 

𝑅𝐸𝑖,𝑗 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑠𝑗) − 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑠𝑖) 

where 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑠𝑗)  represents the remaining energy of node i in state 𝑠𝑖  as a percentage; 

meanwhile, 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑠𝑖) represents the remaining energy of node j in state 𝑠𝑗as a percentage. The 
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formula calculates the difference in remaining energy between node i and j after the data transmission. A higher 

value of 𝑅𝐸𝑖,𝑗  indicates that node i has consumed less energy in forwarding the packet to node j, which is 

desirable to achieve the energy efficiency objective (𝑜1). 

ii. Load balance: To optimize energy efficiency and network performance in the SDWSN, the careful 

selection of relay nodes and balanced workload distribution are crucial. Otherwise, some nodes along 

overused paths may become overloaded, leading to bottlenecks and delays, which can result in a 

degraded network performance. For objective 𝑜2, we utilize the parameter-available buffer length to 

estimate the degree of queue congestion in relay nodes. The reward 𝑅_𝑄𝑖,𝑗  for load balancing as 

observed by node i when selecting node j is computed as follows: 

𝑅_𝑄𝑖,𝑗 =
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑢𝑓𝑓𝑒𝑟_𝐿𝑒𝑛𝑔𝑡ℎ(𝑠𝑗)

𝑀𝑎𝑥_𝐵𝑢𝑓𝑓𝑒𝑟_𝐿𝑒𝑛𝑔𝑡ℎ
−

𝐿𝑜𝑎𝑑 (𝑠𝑖)

𝑀𝑎𝑥_𝐿𝑜𝑎𝑑
 

where 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑢𝑓𝑓𝑒𝑟_𝐿𝑒𝑛𝑔𝑡ℎ(𝑠𝑗)  represents the available buffer length of node j in state 

𝑠𝑗 , 𝑀𝑎𝑥_𝐵𝑢𝑓𝑓𝑒𝑟_𝐿𝑒𝑛𝑔𝑡ℎ represents the maximum buffer length of a node, 𝐿𝑜𝑎𝑑 (𝑠𝑖) represents the current 

load of node i in state 𝑠𝑖 , and 𝑀𝑎𝑥_𝐿𝑜𝑎𝑑  represents the maximum load capacity of a node. This formula 

considers both the available buffer length of node j and the current load of node i. The second term subtracts the 

load of node i from the load balancing reward value, allowing for a more comprehensive estimation that takes 

into account both node i and node j in the load balancing process. A higher value of 𝑅_𝑄𝑖,𝑗indicates a better load 

balancing situation for the given state-action pair (𝑠𝑖  , 𝑠𝑗). 

iii. Link quality: A wireless link can be measured by retrieving useful information from either the sender 

or receiver side. To achieve 𝑜3, we use simple measurements to estimate the link quality based on the 

parameter packet reception ratio (PRR), measured as the ratio of the total number of packets 

successfully received to the total number of packets transmitted through a specific wireless link 

between two nodes. Unlike other sophisticated techniques, this approach involves a low computation 

and communication overhead. Instead of using an instant value of the PRR, we calculate an average-

over-time using an Adaptive Weighted Moving Average (AWMA) filter. Suppose node i is forwarding 

data packets to node j, the reward 𝑅_𝐿𝑄𝑖,𝑗 received by node j based on PRR using AWMA is estimated 

as follows: 

𝑅𝐿𝑄𝑖,𝑗
= 𝑃𝑅𝑅𝑒𝑠𝑡𝑖,𝑗(𝑘−1). ∝AWMA+ 𝑃𝑅𝑅𝑆𝑎𝑚𝑝𝑙𝑒𝑖,𝑗

(𝑘). (1 −∝AWMA) 

whereby 𝑃𝑅𝑅𝑒𝑠𝑡𝑖,𝑗(𝑘−1) is the previously estimated average, 𝑃𝑅𝑅𝑆𝑎𝑚𝑝𝑙𝑒𝑖,𝑗
(𝑘) is the most recent measured value 

of the packet reception ratio calculated, and ∝AWMAis the filter parameter. 

• The State Space (S): We define the state space as a graph corresponding to the global topology created 

by the RNs on the data plane, as seen by the intelligent RL controller. Each state in the state space 

corresponds to an RN, and a state transition refers to a link connecting two RNs. The intelligent RL 

controller uses the partial maps created by the topology discovery module to create a global topology. 

Therefore, the cardinality of the set of states depends on the number of nodes that can actively 

participate in routing.  

• The Action Space (A): The action space, denoted as A, includes all possible actions that an agent can 

undertake from a given state of the RL environment. It defines the choices available to the agent at 

each time step, presenting the range of options to the agent. In our specific problem, the discrete action 

space comprises a finite number of actions that the RL agent can select when in a particular state 𝑠𝑖 ∈

 𝑆. The cardinality of A at state i is determined by the number of nodes eligible to participate in the 

routing process from that specific state.  
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• The Optimal Policy (P): The policy determines how the learning agent should behave when it is at a 

given state with the purpose of maximizing the reward value in the learning process. Our proposed 

scheme estimates the Q-function of every objective 𝑜 simultaneously and decides, before every action 

selection decision, which objective estimate 𝑜𝑏𝑒𝑠𝑡 an agent will consider in its decision-making process. 

We use the concept of confidence on computed Q-values by representing each action as a distribution 

and using a normal distribution of Q-values and the mean values to keep track of the variance as shown 

in Equation (2). The agent approximates the optimal Q-function by visiting all pairs of action-states 

and stores the updated Q-values in the Q-table. In our proposed scheme, the approximated Q-value 

𝑄(𝑠𝑡  , 𝑎𝑡) represents the expected cumulative reward when the RL agent is in the state 𝑠𝑡 and takes 

action 𝑎𝑡, transitioning to a new state 𝑠𝑡+1 while maximizing the cumulative rewards for an objective 

𝑜𝑛, where 𝑛 ∈ 𝑁 and N denote the set of all objectives. The Q-learning equation to update Q-values is 

designed as shown below in Equation (7): 

 

 

To steer the exploration behavior of the learning agent by incorporating some heuristic knowledge on the 

problem domain, we introduce an extra reward 𝐹𝑡+1 onto the reward received from the environment 𝑅𝑡+1. The 

newly added shaping reward function F is included when updating the Q-learning rule as follows: 

 

To avoid changes on the optimal policy, F is implemented as the difference of some potential value, 𝐹𝑡+1 =

 𝛾𝜑(𝑡 +  1)  −  𝜑(𝑡) over the state space, where φ is a potential function that provides some hints on states. In 

our study, we define φ as the Normalized Euclidean Distance between the current state(s) and the goal state(G) 

expressed as: 

𝜑 = 1 −
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑆𝑡 , 𝐺)

𝑚𝑎𝑥∀𝑥∈𝑆(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝐺))′
 

where distance (𝑆𝑡 , 𝐺)  is the Euclidean distance between the current state St and the goal state G, and 

𝑚𝑎𝑥∀𝑥∈𝑆(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝐺))′ represents the maximum distance between any state x in the state space S and the 

goal state G. The potential function guides the agent towards the goal state by giving bigger rewards to states 

that are closer to the goal and smaller rewards for states that are farther away 

• In DOS Q-routing: To find the best action-value of the Q-function, the learning agents use an action 

selection mechanism to trade-off between the exploitation and exploration of available action space. To 

achieve this, our proposed scheme uses the e-greedy exploration and exploitation method, whereby 

𝑒 ∈  [0, 1], allowing the agent to exploit with probability 𝑝𝑟 =∈ and explore with probability 𝑝𝑟 =

 1 − ∈. The agent action selection is determined by a randomly generated number 𝑥 ∈  [0, 1], of which 

if 𝑥 <  𝑒,  the agent exploits it by taking an action that returns the most expected optimal value; 

otherwise, it explores it by selecting a random action based on the most confident objective obest as 

observed from the current state by the learning agent as shown below: 
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D. Bayesian Optimization Module: Hyperparameter tuning and performance feedback. 

Bayesian Optimization (BO) is a probabilistic model-based optimization technique designed to optimize 

objective functions that are expensive to evaluate. In the context of optimizing the DOS-RL agent within an 

SDN environment, BO dynamically fine-tunes hyperparameters of the reinforcement learning model to enhance 

its performance. 

The main Objective is to Optimize the performance of the DOS-RL agent in SDN-based IoT networks by 

dynamically adjusting its hyperparameters, such as: 

• Learning Rate (α): Determines the step size for updating the Q-value. 

• Discount Factor (γ): Balances the importance of immediate vs. future rewards. 

• Exploration Rate (ϵ): Controls the trade-off between exploration and exploitation. 

The advantages of BO is efficiently explores the hyperparameter space with fewer evaluations and it handles 

noisy and expensive objective functions (e.g., evaluating RL performance metrics like energy efficiency and 

latency). The BO models the objective function f(x) as a probabilistic function using a surrogate model 

(typically a Gaussian Process, GP). It predicts the expected performance for a given hyperparameter 

configuration and refines the search using an acquisition function. 

i. BO Workflow in Optimizing DOS-RL 

The problem is modeled as a minimization or maximization problem: 

Maximize f(Θ) where Θ={α,γ,ϵ} 

Where: 

• f(Θ): Objective function representing the performance of DOS-RL (e.g., reward or combined metrics 

like energy efficiency and latency). 

• Θ: Hyperparameter set to optimize. 

The workflow of BO is 

1. Search Space: Define the bounds for each hyperparameter: 

𝛼 ∈ [0.01,0.1], 𝛾 ∈ [0.8,1.0], 𝜖 ∈ [0.1,0.3] 

2.  Surrogate Model: Use a Gaussian Process (GP) to model the objective function: 

𝑃(𝑓 ∣ 𝛩) ∼ 𝑁(𝜇(𝛩), 𝜎2(𝛩)) 

o 𝜇(𝛩): Mean prediction of the objective function at 𝛩. 

o 𝜎2(𝛩): Variance representing uncertainty. 

3. Acquisition Function: Guides the selection of the next hyperparameter configuration by balancing 

exploration (uncertain regions) and exploitation (regions with high performance). 

o Common acquisition functions: 

▪ Expected Improvement (EI):  

𝐸𝐼(𝛩) = 𝐸[𝑚𝑎𝑥(0, 𝑓(𝛩∗) − 𝑓(𝛩))] 
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Where 𝛩∗ is the best observed configuration. 

4. Integration of BO in SDN with DOS-RL 

4.1 Workflow in SDN Context 

1. IoT Data Collection: 

o IoT nodes transmit real-time network metrics (e.g., energy levels, traffic conditions) to the 

SDN controller. 

2. Policy Decision: 

o The DOS-RL agent selects routing actions based on the current policy. 

3. Performance Evaluation: 

o The SDN controller monitors performance metrics, such as energy consumption, latency, and 

delivery ratio. 

4. BO-Based Optimization: 

o The BO module: 

▪ Collects feedback on DOS-RL performance. 

▪ Optimizes hyperparameters to improve future policy decisions. 

5. Policy Deployment: 

o The SDN controller updates routing policies in the data plane. 

4.2 Metrics for BO Optimization 

1. Reward Function: Combines energy, latency, and delivery ratio: 

 

2. Objective Function: Combines rewards over multiple episodes: 

 

Where T is the number of iterations in an RL episode. 

Algorithm 2: DOS-RL with Hyperparameter Tuning Bayesian Optimization: 

Input: Learning rate ∝; Exploration-Explotiation parameter e; Number of learning episodes n; Potential 

function for each state φ; All link pairs (src, dst): V Links pair; Link states, set of learning objectives: 

N;  

Bayesian Optimization Parameters: Surrogate model-Gaussin process (GP); Acquisition function-

Expected Improvement (EI); Hyperparameter search space: (α ∈ [0.01, 0.1]; γ ∈ [0.8, 1.0]; ϵ ∈ [0.1, 

0.3] 

Output:  
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⚫ Optimizaed Q values Q(S,A) 

⚫ Set up of computed path stored in route repository 

Procedure: 

 

 

 

- 
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Hence The SDN controller continuously updates its routing policies based on the optimized actions 

provided by the DOS-RL agent and hyperparameter tuning from BO. These updates are deployed to the 

data plane, directly impacting how the data packets are routed within the network. Hence after optimizing 

the routing policy, the controller updates the data plane with the new policy.The network traffic is routed 

according to the updated policies, completing the feedback loop. 
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I. EXPERIMENTAL RESULTS 

This section presents an evaluation of the proposed DOS-RL routing scheme. The chapter is organized into 

multiple sections and subsections, which outline the simulation tools and frameworks used to measure the 

scheme’s performance. Furthermore, it include details about the test environment, performance metrics, learning 

parameter settings, and the observed results, which will be presented and discussed. 

Simulation Environment 

To evaluate the effectiveness of our proposed scheme, we conducted simulations using ns-3 [41], an open-

source system-level network simulation tool capable of creating an environment for the easy transfer of states 

and actions between AI frameworks and the ns-3 simulation environment. To achieve this, we employ the ns3-ai 

[42] module, which enables seamless integration between ns-3 and open-source AI frameworks like TensorFlow 

and PyTorch by utilizing shared memory. The ns3-ai module consists of two components: the ns-3 interface, 

implemented in C++, and the AI interface developed in Python. These components work together to ensure the 

fast and efficient exchange of large data volumes from a C++ program to a Python program. By utilizing shared 

memory, the ns3-ai module facilitates communication between multiple processes. Unlike the ns3-gym 

framework [43], which relies on pipes or sockets, the use of shared memory allows for the creation of a highly 

efficient core module for data transfer. 

To implement our proposed scheme, we have designed a system architecture that combines the ns3-ai and the 

SDWSN architecture, as shown in Figure 2. The proposed architecture, depicted in Figure 3, consists of two 

main components: the ns-3 simulator and the AI framework. The ns-3 simulator serves as the data generator by 

providing environments to create simulation scenarios. It generates relevant information, which is then fed into 

the AI framework for training the model to make real-time decisions. The AI framework processes the data 

received from the ns-3 simulator and trains the model to make intelligent decisions. The shared memory pool 

facilitates the seamless data exchange between the ns-3 and the AI framework, allowing both sides to access and 

manipulate the data. Control signals, managed by four modules operating at the control layer, ensure smooth 

communication and coordination between the ns-3 and the AI framework. This integration enables efficient 

decision-making and the evaluation of our proposed routing scheme. 
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Figure 4 (a): Reward per Episodes 
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Figure 4(b): Comparison of Energy consumption  

 

Figure 4(c): Comparison of Energy consumption  

 

To evaluate the convergence speed of the algorithms, Figure 4a plots the learning curve for the average rewards 

collected and the average energy consumed per number of episodes in Figure 4b. In Figure 4c,d, we can see 

plots for the average episode length and the average frequency of hitting obstacles per number of episodes 

during the entire simulation time. In Figure 4a, we can see how the poor performance of the RL algorithm is 

affected by its frequency of hitting obstacles during the first 100 episodes. The DOS-RL with shaped rewards 

outperforms the rest of the algorithm by proving its efficiency in conserving energy (Figure 4b) by nearly 20% 

with the highest average collected at a cost of a slightly longer episode length compared to the RL algorithm. In 

summary, unlike the traditional RL, the DOS algorithms seem to perform much better by allowing the agent to 
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explore different strategies that cater to different objectives. This allows the algorithms to find a balance 

between objectives more effectively. 

Packet Delivery Ratio of Routing Protocols  

In our evaluation, we examine the performance of three routing protocol schemes in a network environment 

comprising 30 randomly distributed Relay Nodes (RNs). We investigate how the Packet Delivery Ratio (PDR) 

of these schemes is affected when varying the number of traffic sources and the relay node density. 

 

Figure 5: Packet Delivery Ratio 

From figure 5, the observe that the difference in the PDR remains relatively small across the different numbers 

of the RNs. In Figure 5b, we notice a gradual decline in the PDR as the number of nodes increases. This decline 

can be attributed to factors such as increased network complexity, scalability, congestion, and increased 

overhead resulting from a larger number of nodes sharing the network resources. Nevertheless, our proposed 

scheme continues to outperform the other routing schemes by maintaining a comparatively higher PDR, even 

when the number of RNs is doubled. 

End-To-End Delay of Routing Protocols  

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

30 45 60

P
ac

k
et

 D
el

iv
er

y
 R

at
io

Number of Nodes

OSPF SDN-Q DOS-RL DOS-RL Shaped with BO



Mrs. M. Senthamil Selvi, Dr. L. Sudha Adaptive and Energy-Efficient IoT Routing via DOS-RL with 

Bayesian Hyperparameter Tuning in SDN-Driven Architectures 

 

 
 

Cuest.fisioter.2025.54(3):173-192                                                                                                                           191 
 

 

Figure 6: End to End Delay Comparison 

Next, we look at the E2E simulation results of the three protocols as shown in Figure 6a. The OSPF routing 

algorithm typically aims for a low routing delay by selecting the shortest path which is expected to perform well 

under normal conditions; however, the results state otherwise. From the results, it can be seen that the OSPF has 

the worst performance. However, our proposed scheme adjusts well by adjusting learning objectives in real-time. 

The SDN-Q fails to perform well because the paths it selects last longer and hence, increase the probability for 

congested paths to occur. 

II. CONCLUSION 

In this paper, we have proposed a novel approach to optimizing routing in Internet of Things (IoT) networks by 

leveraging Software-Defined Networking (SDN), Reinforcement Learning (RL) with Dynamic Objective 

Selection (DOS-RL), and Bayesian Optimization (BO) for hyperparameter tuning. As IoT networks continue to 

grow and evolve, addressing challenges such as energy efficiency, latency, and adaptability is crucial for 

maintaining optimal network performance. The integration of SDN provides centralized control, enabling 

dynamic and intelligent policy adjustments in real time. The DOS-RL agent, with its ability to prioritize and 

optimize multiple objectives, ensures that routing decisions are adapted to the network’s current state, balancing 

factors like energy consumption, latency, and packet delivery. The Bayesian Optimization technique refines the 

performance of the DOS-RL agent by dynamically adjusting its hyperparameters, ensuring that the agent learns 

and adapts more effectively over time. This closed-loop system enables the IoT network to respond swiftly to 

changing conditions, enhancing its energy efficiency, reducing latency, and improving the delivery ratio, all 

while maintaining scalability and robustness. Through iterative adaptation and intelligent parameter 

optimization, the proposed system demonstrates significant potential for improving the performance of modern 

IoT networks. By combining the strengths of SDN, RL, and Bayesian Optimization, this approach not only 

addresses the core challenges of IoT routing but also sets the stage for future advancements in adaptive, energy-

efficient, and scalable IoT systems. 
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