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Abstract 

Fuzzy coloring of a fuzzy graph is one of the important areas of graph theory, and it plays an important 

role in real-life problems. Let 𝐺 = (𝑉, 𝜎, 𝜇) be a fuzzy graph. Fuzzy coloring is an assignment of 

basic or fuzzy colors to the vertices of 𝐺, and it is proper, (i) If two vertices are connected by a strong 

edge, then they either have different basic or fuzzy colors (if necessary), or one vertex can have a 

basic color and the other can have a fuzzy color corresponding to different basic color. (ii) If two 

vertices are connected by a weak edge, then they either have the same or different fuzzy colors, or 

one vertex can have a basic color and the other can have a fuzzy color corresponding to the same 

basic color. The minimum number of colors (basic or fuzzy) needed for a proper fuzzy coloring of 𝐺 

is called the chromatic number of 𝐺 and is denoted by 𝜒𝑓(𝐺) . In this paper, the chromatic number of 

certain families of fuzzy graphs, such as path, cycle, star, wheel, and complete graphs are derived. 

Some relevant properties on fuzzy coloring of path, cycle, star, wheel, and complete graphs are 

proved. Furthermore, an application on fuzzy coloring is formulated using the chromatic number of 

𝐺. 

 

Keywords: Fuzzy graph, Strong edge, Weak edge, Fuzzy coloring, Chromatic number. 

 

1. Introduction  

Fuzzy graph coloring is one of the most extensively researched topics in combinatorial 

optimization[1] and it plays a vital role in addressing uncertainty, imprecision, and ambiguity 

across diverse fields. One of the most practical problems in the literature was the traffic light 

problem[2], which was resolved by applying the crisp graph coloring method. However, in the 

traffic light problem, certain roads are busier than others. Additionally, sometimes two roads 

may occasionally be opened concurrently with caution. Both “busy” and “cautious” are fuzzy 

terms here. In 2005, Susana Munoz et al.[3] introduced the coloring of fuzzy graphs, and they 

designed the traffic light problem using fuzzy graphs. In that paper, Susana Munoz et al. 

proposed a method for coloring the vertices of fuzzy graphs with a crisp vertex set and a fuzzy 

edge set (the type 1 fuzzy graphs). 

Furthermore, in 2006, Eslahchi and Onagh[4] developed a similar method of coloring for fuzzy 

graphs with fuzzy vertex sets and fuzzy edge sets (the type 2 fuzzy graphs) based on strong 

adjacencies between vertices. In 2015, Sovan Samanta et al.[2] introduced a new concept to color 

a fuzzy graph by using fuzzy colors based on the strength of an edge incident to a vertex, and 

they also introduced the fuzzy chromatic number, which motivated us to develop an extension 

for the procedure of coloring a fuzzy graph using fuzzy colors based on the strength of an edge 

incident to a vertex. In this paper, the chromatic number of certain families of fuzzy graphs, such as 

path, cycle, star, wheel, and complete graphs, has been found, and some properties on fuzzy 

coloring are given. 

The structure of this article is as follows : In Section 1, the introduction to the fuzzy coloring of a 

fuzzy graph is given. In Section 2, we review the fundamental concepts of fuzzy graph theory 

and fuzzy coloring that are essential for our research. In Section 3, we discuss the key concepts 

essential for fuzzy coloring and introduce an improved procedure for the fuzzy coloring of fuzzy 
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graphs using fuzzy colors. We also illustrate the fuzzy coloring of a fuzzy graph in three different 

cases : when all edges are strong, when all edges are weak, and when the graph contains both weak 

and strong edges. Furthermore, we provide the chromatic number for each such fuzzy graph. In 

Section 4, the chromatic numbers of certain families of fuzzy graphs are found by using fuzzy colors 

based on the strength of an edge incident to a vertex. In Section 5, an application of fuzzy coloring 

is illustrated. We examine the literacy rates of various states in India and explore the relationships 

between these states with the goal of improving literacy. Finally, conclusions are given in Section 

6. 

 

2. Preliminaries 

This section begins with a review of some definitions from fuzzy graph theory and fuzzy coloring, 

which helps to find the chromatic number of fuzzy graphs. 
 

Let 𝐺 = (𝑉,𝐸) be a graph consisting of a non-empty finite set 𝑉 of elements called vertices 

and a finite set 𝐸 of ordered pairs of distinct vertices called edges. An edge (𝑣𝑖, 𝑣𝑗) is said to 

be incident to the vertices 𝑣𝑖 and 𝑣𝑗. 
 

Definition 2.1. [5] Let 𝐺 = (𝑉,𝐸) be a graph. Chromatic number of 𝐺 is the minimum number 

of colors needed to color the vertices of 𝐺, such that no two adjacent vertices can have the same 

color (proper coloring) and is denoted by χ(𝐺). 
 

Theorem 2.1. [6] Let 𝐺 be a trivial graph, then  𝜒(𝐺) = 1. 
 

Theorem 2.2. [2] Let 𝑃𝑛 be a path, then 𝜒(𝑃𝑛) = 2. 
 

Theorem 2.3. [5] Let 𝐶𝑛 be a cycle, then 

𝜒(𝐶𝑛) = {
2   𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.  

 

 

Theorem 2.4. [6] Let 𝑆𝑛 be a star, then 𝜒(𝑆𝑛) = 2. 
 

Theorem 2.5. [6] Let 𝑊𝑛, 𝑛 ≥  3 be a wheel graph, then 

𝜒(𝑊𝑛) = {
4  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.  

 

 

Theorem 2.6. [6] Let 𝐾𝑛 be a complete graph, then 𝜒(𝐾𝑛) = 𝑛. 
 

Theorem 2.7. [7] The complete graph 𝐾𝑛 has a Hamiltonian decomposition for all 𝑛. 
 

Definition 2.2. (fuzzy set, membership function [8]) Let 𝑋 be universe of discourse, then a 

fuzzy set 𝐴 in 𝑋 is a set of ordered pairs :  𝐴 = {(𝑥, µ𝐴(𝑥))|𝑥 ∈ 𝑋}, where µ𝐴(𝑥) ∶  𝑋 →
[0, 1] is called the membership function (generalized characteristic function). i.e., membership 

function assigns a fuzzy index µ𝐴(𝑥) to every member x of a fuzzy set 𝐴 in the interval of 

[0,1]. Which is often called membership value of 𝑥 in 𝐴. 

 

Definition 2.3. (fuzzy graph [9]) A fuzzy graph 𝐺 = (𝑉, 𝜎, µ) is a pair of functions (𝜎, µ), 
where 𝜎 ∶  𝑉 →  [0, 1] is a fuzzy subset of a non empty set V, and µ ∶  𝑉 → [0, 1] is a 

symmetric fuzzy relation on 𝜎, such that the relation µ(𝑣𝑖, 𝑣𝑗) ≤ 𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗) is satisfied 

for all 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 and (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 ⊂ 𝑉 × 𝑉 . 

Here, 𝜎(𝑣𝑖) denote the degree of membership of the vertex 𝑣𝑖, and µ(𝑣𝑖, 𝑣𝑗) denotes the degree of 

membership of the edge relation 𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗) on 𝑉 ×  𝑉 . 
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Note : In this paper, we denote 𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗) = 𝑚𝑖𝑛{𝜎(𝑣𝑖), 𝜎(𝑣𝑗)}, and  𝜎(𝑣𝑖) ∨

𝜎(𝑣𝑗) = 𝑚𝑎𝑥{𝜎(𝑣𝑖), 𝜎(𝑣𝑗)}. 
 

Definition 2.4. (fuzzy subgraph [9]) Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph. The fuzzy graph 

𝐺1 = (𝑉, 𝜎1, µ1) is called a fuzzy subgraph of 𝐺 if 𝜎1(𝑥) ≤ 𝜎(𝑥) for all 𝑥 and µ1(𝑥, 𝑦) ≤
 µ(𝑥, 𝑦) for all edges (𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑉 . 
 

Definition 2.5. (trivial graph [11]) Let 𝐺 = (𝑉, 𝜎, µ)  be a fuzzy graph with underlying crisp 

graph 𝐺∗ = (𝑉, 𝜎∗, µ∗), where 𝜎∗ = {𝑥 ∈ 𝑉 | 𝜎(𝑥) > 0} and µ∗ = {(𝑥, 𝑦) ∈ 𝑉 ×
 𝑉 | µ(𝑥, 𝑦) > 0}. Then 𝐺 is called trivial if |σ∗| = 1. 
 

Definition 2.6. (fuzzy path [12]) Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph with underlying crisp 

graph 𝐺∗. A  fuzzy path 𝑃𝑛 in 𝐺 is a sequence of distinct vertices 𝑣0, 𝑣1, . . . , 𝑣𝑛 such that 

µ(𝑣𝑖−1, 𝑣𝑖) > 0, 1 ≤ 𝑖 ≤ 𝑛 . Here 𝑛 ≥ 1 is called the length of the path 𝑃𝑛. 
 

Definition 2.7. (strength of a fuzzy path [12]) Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph and 𝑃𝑛  be a 

fuzzy path in 𝐺. The strength of a fuzzy path 𝑃𝑛, 𝑠(𝑃𝑛) is given by ⋀ µ(𝑣𝑖−1, 𝑣𝑖)
𝑛
𝑖=1 . 

 

Definition 2.8. (components [13],[9]) Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph. Two vertices 𝑢 and 

𝑣 of 𝐺 are said to be connected if there is a 𝑢 − 𝑣 path in 𝐺. The relation “connected” is an 

equivalence relation on 𝑉(𝐺). Let 𝑉1, 𝑉2, . . . , 𝑉𝜔 be the equivalence classes. The fuzzy subgraphs 

𝐺[𝑉1], 𝐺[𝑉2], . . . , 𝐺[𝑉𝜔] are called the components of 𝐺. If 𝜔 = 1, the fuzzy graph 𝐺 is 

connected; otherwise, the fuzzy graph 𝐺 is disconnected with 𝜔 ≥ 2 components. 
 

Definition 2.9. (strong edge, weak edge [2]) Let 𝐺 =  (𝑉, 𝜎, 𝜇) be a fuzzy graph and an edge 

𝑒 = (𝑣𝑖 , 𝑣𝑗) ∈ 𝐺 is called strong if 
1

2
{𝜎(𝑣𝑖) ⋀ 𝜎(𝑣𝑗)} ≤ 𝜇(𝑣𝑖, 𝑣𝑗) and it is called weak 

otherwise. 
 

Definition 2.10. (strength of an edge [2]) Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph and the strength 

of an edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐺 is denoted by, 

𝐼(𝑣𝑖 , 𝑣𝑗) =
𝜇(𝑣𝑖, 𝑣𝑗)

𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗)
. 

 

Definition 2.11. (fuzzy cycle [12]) A fuzzy path 𝑃𝑛 in which 𝑣0 = 𝑣𝑛 and 𝑛 ≥ 3, then 𝑃𝑛 is 
called a fuzzy cycle 𝐶𝑛 of length 𝑛. 
 

Definition 2.12. (fuzzy star [8]) A fuzzy graph 𝐺 = (𝑉, 𝜎, µ) is a fuzzy star 𝑆𝑛, if there exists 

only one vertex 𝑣0 ∈ 𝑉 such that µ(𝑣0, 𝑣𝑖) > 0 and µ(𝑣𝑖 , 𝑣𝑗) = 0 ∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉. 
 

Definition 2.13. (fuzzy wheel [8]) A fuzzy graph 𝐺 = (𝑉, 𝜎, µ) is a fuzzy wheel 𝑊𝑛 if 
𝐸(𝐺) = {(𝑣0, 𝑣𝑖) | µ(𝑣0, 𝑣𝑖) > 0, 𝑖 = 1, 2, . . . , 𝑛 − 1} ∪ {(𝑣1, 𝑣𝑛−1) | µ(𝑣1, 𝑣𝑛−1) > 0} ∪
{(𝑣𝑗,𝑣𝑗+1| µ(𝑣𝑗 , 𝑣𝑗+1) > 0, 𝑗 = 1, 2, . . . , 𝑛 − 2}. 
 

Definition 2.14. (complete fuzzy graph [9]) A fuzzy graph 𝐺 = (𝑉, 𝜎, µ) is a complete fuzzy 

graph 𝐾𝑛, if µ(𝑣𝑖, 𝑣𝑗) = 𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗) for every 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. 
 

Definition 2.15. (fuzzy cut vertex [9]) A vertex 𝑥 in 𝐺 = (𝑉, 𝜎, µ) is a fuzzy cut vertex, if 

removal of 𝑥 reduces the strength of connectedness between some pair of vertices in 𝐺 − 𝑥. 
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Definition 2.16. (block [9]) A maximal connected fuzzy subgraph of 𝐺 = (𝑉, 𝜎, µ), which 

has no fuzzy cut vertices called a block of a fuzzy graph 𝐺. If 𝐺 has no fuzzy cut vertex, then 

𝐺 itself is a block. 
 

Definition 2.17. (basic color, fuzzy color [2]) Mixing of a color with white color dilutes the 

density of the color. Suppose a quantity of 𝑞 (≤ 1) units of a color 𝑐𝑘 is mixed with 1 − 𝑞 units 

of white color, then the mixture is called a standard mixture of the color 𝑐𝑘. The resultant color 

is called a fuzzy color of the color 𝑐𝑘 with membership value 𝑞 whereas 𝑐𝑘 is called basic color. 
 

Definition 2.18. [2] Let 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, 𝑛 ≥ 1 be a set of basic colors. The fuzzy set 

(𝐶, 𝑓) is called the set of fuzzy colors, where 𝑓 ∶ 𝐶 → [0, 1] with 𝑓(𝑐𝑖), be the amount of the 

basic color ci per unit of standard mixture (the membership value of the fuzzy  color 

corresponding to the basic color 𝑐𝑖). That is, the color 𝑐′ = (𝑐𝑖, 𝑓(𝑐𝑖))  is called the fuzzy 

color corresponding to the basic color 𝑐𝑖 with membership value 𝑓(𝑐𝑖). Thus, a basic color is 

also a fuzzy color whose membership value is taken as 1. 𝑖. 𝑒. , (𝐶, 1). 
 

Definition 2.19. (union [9]) Let 𝐺1 = (𝑉1, 𝜎1, µ1) and 𝐺2 = (𝑉2, 𝜎2, µ2) be two fuzzy graphs 

with underlying vertex sets 𝑉1 and  𝑉2 and edge sets 𝐸1 and 𝐸2  respectively. Let 𝑉 = 𝑉1 ∪ 𝑉2 

and let 𝐸 = {𝑢𝑣 | 𝑢, 𝑣 ∈  𝑉, 𝑢𝑣 ∈ 𝐸1 or 𝑢𝑣 ∈ 𝐸2 or 𝑢𝑣 ∈ 𝐸1 ∩ 𝐸2}, then the union of 𝐺1 and 

𝐺2 denoted by 𝐺1 ∪ 𝐺2 ∶  (𝜎1 ∪ 𝜎2, µ1 ∪ µ2)  is defined by  

(𝜎1 ∪ 𝜎2)(𝑢) = {

𝜎1(𝑢)                       𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2,

𝜎2(𝑢)                       𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1,

𝜎1(𝑢) ∨ 𝜎2(𝑢)   𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2.

 

and  

(𝜇1 ∪ 𝜇2)(𝑢) = {

𝜇1(𝑢, 𝑣)                      𝑖𝑓 𝑢𝑣 ∈ 𝐸1 − 𝐸2,

𝜇2(𝑢, 𝑣)                      𝑖𝑓 𝑢𝑣 ∈ 𝐸2 − 𝐸1,

𝜇1(𝑢, 𝑣) ∨ 𝜇2(𝑢, 𝑣)  𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2.   

 

 

Theorem 2.8. [10] Let 𝐺1(𝑉1, 𝐸1) and 𝐺2(𝑉2, 𝐸2) be two fuzzy graphs, the chromatic 

numbers of 𝐺1 and 𝐺2 be 𝜒𝑓(𝐺1) and 𝜒𝑓(𝐺2), respectively. If fuzzy graph 𝐺(𝑉,𝐸) is the 

union of two fuzzy graphs 𝐺1 and 𝐺2, then the chromatic number of 𝐺 satisfies 

𝑚𝑎𝑥{𝜒𝑓(𝐺1), 𝜒𝑓(𝐺2)} ≤ 𝜒𝑓(𝐺) ≤ 𝜒𝑓(𝐺1) + 𝜒𝑓(𝐺2). 

 

3. Fuzzy Coloring of a Fuzzy Graph  
 

Definition 3.1. Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph. Fuzzy coloring is an assignment of basic 

or fuzzy colors to the vertices of a fuzzy graph 𝐺 and it is proper, 

(i) if two vertices are connected by a strong edge, then they either have different basic or fuzzy 

colors(if necessary), or one vertex can have a basic color and the other can have a fuzzy 

color corresponding to different basic color. 

(ii) if two vertices are connected by a weak edge, then they either have same or different fuzzy 

colors, or one vertex can have a basic color and other can have a fuzzy color corresponding to 

the same basic color. 
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Example 1. 

      
Figure 1.  𝛘𝐟(𝐆) = 𝟑. 

 

Definition 3.2. Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph. Perfect fuzzy coloring (optimal fuzzy 

coloring) is an assignment of minimum number of colors (basic or fuzzy) for a proper fuzzy 

coloring of 𝐺. (refer Example 1). 
 

Definition 3.3. Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph. The minimum number of colors (basic or 

fuzzy) needed for a proper fuzzy coloring of G is called the chromatic number of 𝐺 and is 

denoted by 𝜒𝑓(𝐺). (refer Example 1). 
 

In a proper coloring of a crisp graph, two vertices have different colors if they are adjacent, and they 

may have the same color if they are not adjacent. But a proper fuzzy coloring of a fuzzy graph 

is based on the weak and strong edges of it. The procedure of proper fuzzy coloring of a fuzzy 

graph is based on the following concepts : 
 

Case 3.1 : If an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐺 is strong, then the vertices of 𝑒 can be colored in any 

of the following ways. 

(i) both the vertices of 𝑒 can have different basic colors. 𝑖. 𝑒., 𝑢 and 𝑣 can have colors (𝑅, 1) and 

(𝑌, 1), respectively. 

(ii) one vertex of 𝑒 can have a basic color and other can have a fuzzy color corresponding to different 

basic color. 𝑖. 𝑒., 𝑢 and 𝑣 can have colors (𝑅, 1) and (𝑌, 0. 𝑎), respectively. 

(iii) both the vertices of 𝑒 can have different fuzzy colors (if necessary only). 𝑖. 𝑒., 𝑢 and 𝑣 can 

have colors (𝑅, 0. 𝑎) and (𝑌, 0. 𝑏), respectively. 
 

Case 3.2 : If an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐺 is weak then the vertices of 𝑒 can be colored in any of 

the following ways. 

(i) one vertex of 𝑒 can have a basic color and other can have a fuzzy color corresponding to the same 

basic color.𝑖. 𝑒., 𝑢 and 𝑣 can have colors (𝑅, 1) and (𝑅, 0. 𝑎), respectively. 

(ii) both the vertices of 𝑒 can have the same fuzzy colors. 𝑖. 𝑒., 𝑢 and 𝑣 can have colors (𝑅, 0. 𝑎) and 

(𝑅, 0. 𝑏), respectively. 

(iii) both the vertices of 𝑒 can have different fuzzy colors. i.e., 𝑢 and 𝑣 can have colors (𝑅, 0. 𝑎) and 

(𝑌, 0. 𝑏), respectively. 

 

Note : where a, b are positive integers. 

 

3.1.  Procedure of Proper Fuzzy Coloring of a Fuzzy Graph 

Let 𝐺 = (𝑉, 𝜎, µ) be a connected fuzzy graph and 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, 𝑛 ≥ 1 be a set of 

colors. In fuzzy graphs, there are two kinds of edges. i.e., strong and weak edges. It is important 

to note that a strong edge holds greater significance than a weak edge; in other words, there is a 
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high correlation between the associated vertices. Based on these edges, the fuzzy coloring of a 

fuzzy graph is determined through three cases. 
 

Case 3.1.1. If all the edges are strong in a fuzzy graph. 

If all the edges in a fuzzy graph are strong, then the coloring of the fuzzy graph resembles the coloring 

of the crisp graph. i.e., if two vertices are connected by a strong edge, then they should be colored 

with two different basic colors. 
 

Case 3.1.2. If some edges are strong in a fuzzy graph. 

Let 𝑢1 be a vertex and 𝑁(𝑢1) = {𝑣𝑖, 𝑖 = 1, 2, . . . , 𝑛} be the set of all neighborhoods of the 

vertex 𝑢1. For simplicity, assume that  𝑣1 is a vertex such that (𝑣1, 𝑢1) is the sole strong edge 

incident to 𝑢1, while all other edges (𝑢1, 𝑣𝑖), 𝑖 = 2, 3, . . . , 𝑛 incident to 𝑢1 are weak. Now consider 

the vertex 𝑣2 for coloring. There are three possibilities for coloring the vertex 𝑣2. 
 

Subcase 3.1.2.1. Suppose all the neighboring vertices of 𝑣2 are not colored. 

As the edge (𝑣1, 𝑢1) is strong, color 𝑣1 with (𝑐1, 1) and color 𝑢1 with (𝑐, 1).  Since (𝑢1, 𝑣2) 
is weak, 𝑣2 can be colored with a fuzzy color corresponding to the color of 𝑢1. Then the fuzzy 

color of 𝑣2 be (𝑐, 𝑓(𝑐)), where 𝑓(𝑐) can be calculated as,  

 

𝑓(𝑐) = 1− 𝐼(𝑢1, 𝑣2), 
where,                                                   

 𝐼(𝑢1, 𝑣2) =
𝜇(𝑢1, 𝑣2)

𝜎(𝑢1) ∧ 𝜎(𝑣2)
. 

 

Suppose, 𝑣2 has some strong incident edges, say (𝑣2, 𝑢𝑖), 𝑖 = 2,… , 𝑞. Then color each vertex 𝑢𝑖  with 

different basic colors. 

Suppose an edge (𝑢𝑖, 𝑢𝑖+1) ∈ 𝐺, where 𝑖 > 1, is weak. Since (𝑣2, 𝑢𝑖) and (𝑣2, 𝑢𝑖+1) are strong, 𝑢𝑖 
and 𝑢𝑖+1 must receive different basic colors. However, the edge (𝑢𝑖 , 𝑢𝑖+1) is weak. Therefore, vertex 

𝑢𝑖 will receive a basic color, and 𝑢𝑖+1 will receive a fuzzy color corresponding to the color of vertex 

𝑢𝑖 with a membership value of 1 −  𝐼(𝑢𝑖, 𝑢𝑖+1). 
 

 
Figure 2.  An arbitrary graph. 

 

Subcase 3.1.2.2. Suppose all the neighboring vertices of 𝑣2 are colored. 

If an edge (𝑣2, 𝑢𝑘) incident to 𝑣2 is strong, then 𝑣2 cannot be colored with the color of 𝑢𝑘. In 

other words, if the color of 𝑢𝑘 is (𝑐𝑘, 𝑓(𝑐𝑘)), then 𝑣2 cannot be colored with  any fuzzy color of 

 𝑐𝑘. Suppose, 𝑣2 has some weak incident edges, say (𝑣2, 𝑢𝑖), 𝑖 =  1, 2, . . . , 𝑞. Without loss of 



`

1 
  3   5     

    

M.G. Karunambigai, Jessalet Ann Mathew 
 

                                          The Chromatic Number of Certain Families of Fuzzy Graphs 

 

 

Cuest.fisioter.2025.54(2):01-14 7 

generality assume that, the color of 𝑢𝑖 is (𝑥𝑖 , 𝑓(𝑥𝑖)), 𝑖 = 1, 2, . . . , 𝑞, where  𝑓(𝑥𝑖), 𝑖 =
 1, 2, . . . , 𝑞 are membership values of the color 𝑥𝑖 , 𝑖 =  1, 2, . . . , 𝑞 and 𝑥𝑖 , 𝑖 =  1, 2, . . . , 𝑞 may 

be different or same. 

To determine the color of 𝑣2, calculate the strength of each weak incident edge and let 𝑀 =
max{1 −  𝐼(𝑣2, 𝑢𝑖), 𝑖 = 1, 2, . . . , 𝑞}. Assume that, 𝑀 is attained for the edge (𝑣2, 𝑢𝑝). i.e., 

𝑀 = 1− 𝐼(𝑣2, 𝑢𝑝). If the color of 𝑢𝑝 is (𝑥𝑝, 𝑓(𝑥𝑝)) then 𝑣2 will receive the fuzzy color 

(𝑥𝑝, 𝑀 ). 

If any neighboring vertices 𝑢𝑖 , 𝑖 = 1, 2, . . . , 𝑞, except 𝑢𝑝, have a basic color, then the basic color 

must be dilute into a fuzzy color corresponding to that basic color with a membership value 1 −
𝐼(𝑣2, 𝑢𝑖). 
 

 
Figure 3.  An arbitrary graph. 

 

Subcase 3.1.2.3. Suppose some of the neighboring vertices of 𝑣2 are colored. 

The neighboring vertices that are not colored do not affect the coloring of 𝑣2. Instead, the 

neighboring vertices that are colored will be considered for the coloring of 𝑣2. The process of 

coloring 𝑣2 is similar to the Subcase 3.1.2.2. 

After the coloring of 𝑣2, all other vertices are to be colored in a similar manner. 
 

Case.3.1.3. If all the edges are weak in a fuzzy graph. 

In this case, choose one vertex 𝑣𝑘 and color it with any basic color, say (𝑐𝑘, 1). All other vertices 

will then receive some fuzzy colors corresponding to the color (𝑐𝑘, 1). The membership values 

of the fuzzy colors are calculated using the method described in Subcase 3.1.2.2. Afterwards, 

color the neighboring vertices of 𝑣𝑘 first, and then apply the same coloring method to all vertices. 
 

Note : If a fuzzy graph is disconnected, i.e., if the fuzzy graph has more than one component, each 

component is colored using the method described above. 
 

Corollary 3.1.1. If 𝐺 is a fuzzy graph with components 𝐺[𝑉1], 𝐺[𝑉2], . . . , 𝐺[𝑣𝜔], then 𝜒𝑓(𝐺) =

max{𝜒𝑓 (𝐺[𝑉𝑖]) ∶  1 ≤ 𝑖 ≤ 𝑘}. 
 

Proposition 3.1.1. If 𝐺 is a connected fuzzy graph with blocks 𝐵1, 𝐵2, . . . , 𝐵𝑘, then 

𝜒𝑓(𝐺) = 𝑚𝑎𝑥{𝜒𝑓(𝐵𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑘}. 

Proof. Let 𝐵1, 𝐵2, . . . , 𝐵𝑘 be the blocks. Consider two blocks 𝐵1 and 𝐵2. 

Let 𝐴1 = 𝐵1 ∪ 𝐵2. Then 𝐴1 be a connected fuzzy graph with blocks 𝐵1 and 𝐵2. Therefore, 

by Theorem 2.8 we have, 
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𝜒𝑓(𝐴1) = 𝜒𝑓(𝐵1 ∪𝐵2) 

            =  𝑚𝑎𝑥{𝜒𝑓(𝐵1),𝜒𝑓(𝐵2)}. 

Now consider the fuzzy graph 𝐴1 and the block 𝐵3. Let 𝐴2 = 𝐴1 ∪ 𝐵3. Then 𝐴2 be a 

connected fuzzy graph with blocks 𝐵1, 𝐵2 and 𝐵3. Therefore, by Theorem 2.8 we have, 

𝜒𝑓(𝐴2) = 𝜒𝑓(𝐴1 ∪𝐵3) 

                =  𝑚𝑎𝑥{𝜒𝑓(𝐴1), 𝜒𝑓(𝐵3)} 

                =  𝑚𝑎𝑥{𝜒𝑓(𝐵1),𝜒𝑓(𝐵2),𝜒𝑓(𝐵3)}. 

Extend the joining process up to 𝐵𝑘. Then let 𝐴𝑘−1 = 𝐴𝑘−2 ∪ 𝐵𝑘 = 𝐺. Then 𝐴𝑘−1 be a 

connected fuzzy graph with blocks 𝐵1, 𝐵2, . . . , 𝐵𝑘.  Therefore, by Theorem 2.8 we have  

𝜒𝑓(𝐴𝑘−1) = 𝜒𝑓(𝐺) 

                  = 𝜒𝑓(𝐴𝑘−2 ∪𝐵𝑘) 

                                                  =  𝑚𝑎𝑥{𝜒𝑓(𝐴𝑘−2),𝜒𝑓(𝐵𝑘)} 

                =  𝑚𝑎𝑥{𝜒𝑓(𝐵1),𝜒𝑓(𝐵2), . . . , 𝜒𝑓(𝐵𝑘)} 

                                                 =  𝑚𝑎𝑥{𝜒𝑓(𝐵𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑘}. 

 

∴  𝜒𝑓(𝐺) = 𝑚𝑎𝑥{𝜒𝑓(𝐵𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑘} 

 

3.2. Examples for Fuzzy Coloring and the Chromatic Number of Fuzzy Graphs  

Some examples of the chromatic number of certain fuzzy graphs are illustrated below. Consider 

the fuzzy cycle 𝐶3. If all the edges are weak in 𝐶3, only one basic color is needed to color all the 

vertices. i.e., the vertex 𝑣1 is colored with (𝑅, 1), and the remaining vertices are colored with 

different fuzzy colors, (𝑅, 0. 𝑎) and (𝑅, 0. 𝑏), where 𝑎, 𝑏 are positive integers. Therefore, the 

chromatic number of this fuzzy cycle is one. If all the edges are strong in 𝐶3, then three basic 

colors are required to color the vertices. i.e., the vertices 𝑣1, 𝑣2, 𝑣3 are colored with different basic 

colors (𝑅, 1), (𝐺, 1) and (𝑌, 1), respectively. Therefore, the chromatic number of this fuzzy cycle is 

three, which is equal to the chromatic number of the underlying crisp graph. 

 

 
Figure 4.  𝛘𝐟(𝐂𝟑) = 𝟐. 

 

Note : Here dotted lines represent weak edges, and plain lines represent strong edges.  

 

Now consider the above fuzzy cycle (Figure 4). Here two edges incident to exactly one vertex 

(say 𝑣3) are weak, and the remaining edge is strong. First, color the vertex  𝑣1 with a basic color 

(𝑅, 1). Since the edge (𝑣1, 𝑣3) is weak, the vertex 𝑣3 will have a fuzzy color (𝑅, 1 − 𝑠), where 𝑠 is 

the strength of the edge(𝑣1, 𝑣3), i.e.,(𝑅, 0.5) in this case. Now consider the vertex  𝑣2 for coloring. 

Since the edge (𝑣2, 𝑣3) is weak, and the edge (𝑣1, 𝑣2) is strong, 𝑣2 will have a fuzzy color 

corresponding to different basic color, say green, with a membership value 1 − 𝐼(𝑣2, 𝑣3),  
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i.e.,(𝐺, 0.5) in this case. Hence, the chromatic number is two. 

 

Remark : For 𝐶3, we do have three chromatic numbers based on the membership values of the 

given fuzzy graph. 

 

4. The Chromatic Number of Certain Families of Fuzzy Graphs  

In this section, the chromatic numbers of certain families of fuzzy graphs, such as path, cycle, star, 

wheel and complete graphs are found by using fuzzy colors based on the strength of an edge 

incident to a vertex in the fuzzy graph 𝐺. 

 

4.1. The Chromatic Number of a Fuzzy Path 

Lemma 4.1.1. Let 𝑃𝑛 be a fuzzy path of length 𝑛. If all edges are weak in 𝑃𝑛, then 

 𝜒𝑓(𝑃𝑛) = 1. 

Lemma 4.1.2. Let 𝑃𝑛 be a fuzzy path of length 𝑛. If all the edges are strong in 𝑃𝑛, then 

𝜒𝑓(𝑃𝑛)= 2.(By Theorem 2.2). 

 

Theorem 4.1.1. Let 𝑃𝑛 be a fuzzy path of length 𝑛. If atleast one edge is strong in 𝑃𝑛, then 

𝜒𝑓(𝑃𝑛) = 2. (By the procedure 3.1). 

 

Property 4.1.1. Let 𝑃2𝑛−1 be a fuzzy path of length 2𝑛 − 1. Then, by proper fuzzy coloring, the 

following statements are true : 

(i) Suppose even number of weak edges, along with strong edges, are distributed in any 

sequence (except alternative distribution) in 𝑃2𝑛−1. Then, end vertices of 𝑃2𝑛−1 can either 

have different basic colors, or one vertex can have a basic color and the other can have a 

different fuzzy color. 

(ii) Suppose odd number of weak edges, along with strong edges, are distributed in any sequence 

(except alternative distribution) in 𝑃2𝑛−1. Then, end vertices of 𝑃2𝑛−1 can either have same 

basic colors, or one vertex can have a basic color and the other can have a fuzzy color 

corresponding to the same b a s i c  color. 

(iii) Suppose even number of weak edges, along with strong edges, are alternatively distributed 

in 𝑃2𝑛−1. Then, end vertices of 𝑃2𝑛−1 can have different basic colors. 

(iv) Suppose odd number of weak edges, along with strong edges, are alternatively distributed in 

𝑃2𝑛−1. Then, one end vertices of 𝑃2𝑛−1 can have a basic color and the other can have a fuzzy 

color corresponding to the same b a s i c  color. 

 

Property 4.1.2. Let 𝑃2𝑛 be a fuzzy path of length 2𝑛. Then, by proper fuzzy coloring, the 

following statements are true : 

(i) Suppose even number of weak edges, along with strong edges, are distributed in any sequence 

in 𝑃2𝑛 . Then, end vertices of 𝑃2𝑛 can either have same basic colors, or one vertex can have a 

basic color and the other can have a fuzzy color corresponding to the same basic color. 

(ii) Suppose odd number of weak edges, along with strong edges, are distributed in any 

sequence in 𝑃2𝑛. Then, end vertices of 𝑃2𝑛 can either have different basic colors, or one 

vertex can have a basic color and the other can have a different fuzzy color. 

(iii) Suppose even number of weak edges, along with strong edges, are alternatively distributed in 

𝑃2𝑛. Then, end vertices of 𝑃2𝑛 can either have same basic colors or one vertex can have a 

basic color and the other can have a fuzzy color corresponding to the same basic color. 

(iv) Suppose odd number of weak edges, along with strong edges, are alternatively distributed 

in 𝑃2𝑛. Then, end vertices of 𝑃2𝑛 can either have different basic colors or one vertex can 

have a basic color and the other can have a different fuzzy color. 
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4.2. The Chromatic Number of a Fuzzy Cycle 

Lemma 4.2.1. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all edges are weak in 𝐶𝑛, then 

𝜒𝑓(𝐶𝑛) = 1. 
 

Lemma 4.2.2. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all the edges are strong in 𝐶𝑛, then 

(by Theorem 2.3) 

𝜒𝑓(𝐶𝑛) = {
2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

 

Theorem 4.2.1. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If weak and strong edges are distributed 

in any sequence in 𝐶𝑛, then 

 𝜒𝑓(𝐶𝑛) = {
3   𝑖𝑓 

𝑛

2
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛(≥ 6)𝑖𝑠 𝑒𝑣𝑒𝑛,                     
2   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                          

 

 

Proof. Case 1 : Suppose 
𝑛

2
  number of strong and weak edges are alternatively distributed in 𝐶𝑛, 

𝑛 (≥  6) is even. 

Let 𝐶2𝑛 ∶  𝑣1𝑒1 . . . 𝑒2𝑛−1𝑣2𝑛𝑒2𝑛𝑣1 be a fuzzy cycle of length 2𝑛, 𝑛 ≥  3 and 𝐶2𝑛  =  𝑃2𝑛−1 +
 𝑒2𝑛, where 𝑃2𝑛−1 ∶  𝑣1𝑒1 . . . 𝑒2𝑛−1𝑣2𝑛  be a fuzzy path of length 2𝑛 − 1. Then by Theorem 4.1.1, 

𝜒𝑓(𝑃2𝑛−1 ) = 2 and by Property 4.1.1, end vertices of 𝑃2𝑛−1 can have the following coloring 

possibilities : 

Subcase 1.1 : If 𝑒1 ∈ 𝑃2𝑛−1 is strong, then 𝑒2𝑛 ∈ 𝐶2𝑛 will be weak. Then 𝑣1 & 𝑣2𝑛 will have 

different basic colors, say (𝑐1, 1) and (𝑐2, 1) respectively. Since the edge 𝑒2𝑛 is weak, 𝑣2𝑛 will 

receive a third color, say (𝑐3, 1) and hence 𝑣1will receive a fuzzy color of (𝑐3, 1), say 

(𝑐3, 𝑓(𝑐3)) with membership value 1 − 𝐼(𝑣1, 𝑣2𝑛). ∴  𝜒𝑓(𝐶𝑛) = 3. 

 

Subcase 1.2 : If 𝑒1 ∈ 𝑃2𝑛−1 is weak, then 𝑒2𝑛 ∈ 𝐶2𝑛will be strong. Then 𝑣1has basic color, 

say (𝑐1, 1) and  𝑣2𝑛 has fuzzy color, say (𝑐1, 𝑓(𝑐1)). Since the edge 𝑒2𝑛 is strong, 𝑣2𝑛will 

receive a fuzzy color of third color, say (𝑐3, 𝑓(𝑐3)). ∴  𝜒𝑓(𝐶𝑛) = 3.  

 

Case 2 : Suppose ⌊
𝑛

2
⌋  number of strong and weak edges are alternatively distributed in 𝐶𝑛, 𝑛 (≥

 3) is odd. 

Let 𝐶2𝑛+1 ∶  𝑣1𝑒1 . . . 𝑒2𝑛𝑣2𝑛+1𝑒2𝑛+1𝑣1 be a fuzzy cycle of length 2𝑛 + 1, 𝑛 ≥ 1 and 

𝐶2𝑛+1 = 𝑃2𝑛+ 𝑒2𝑛+1, where 𝑃2𝑛+1 ∶ 𝑣1𝑒1 . . . 𝑒2𝑛𝑣2𝑛+1 be a fuzzy path of length 2𝑛. 

Then by Theorem 4.1.1, 𝜒𝑓(𝑃2𝑛) = 2, and by Property 4.1.2, end vertices of 𝑃2𝑛 can have 

the following coloring possibilities : 

Subcase 2.1 : Suppose there is an even number of weak edges in 𝑃2𝑛, and 𝑣1has basic color, 

say (𝑐1, 1), while 𝑣(2𝑛+1) has fuzzy color, say (𝑐1, 𝑓(𝑐1)). If 𝑒1 ∈ 𝑃2𝑛 is strong, then 𝑒2𝑛+1 ∈

𝐶2𝑛+1will be strong. Since the edge 𝑒2𝑛+1 is strong, 𝑣2𝑛+1 will receive a fuzzy color of 

second color, say (𝑐2, 𝑓(𝑐2)). ∴  𝜒𝑓(𝐶𝑛) = 2.  

 

Subcase 2.2 : Suppose there is an even number of weak edges in 𝑃2𝑛, and 𝑣1 & 𝑣2𝑛+1 have same 

basic colors, say(𝑐1, 1). If 𝑒1 ∈ 𝑃2𝑛 is weak, then 𝑒2𝑛+1 ∈ 𝐶2𝑛+1will be weak. Since the edge 

𝑒2𝑛+1 is weak, color of 𝑣1will diluted into a fuzzy color, say (𝑐1, 𝑓(𝑐1)), with membership 

value 1 − 𝐼(𝑣1, 𝑣2𝑛+1). ∴  𝜒𝑓(𝐶𝑛) = 2.    
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Subcase 2.3 : Suppose there is an odd number of weak edges in 𝑃2𝑛, and 𝑣1 has basic color, say 

(𝑐1, 1), while 𝑣2𝑛+1has different fuzzy color, say(𝑐2, 𝑓(𝑐2)). If 𝑒1 ∈ 𝑃2𝑛 is strong, then 

 𝑒2𝑛+1 ∈ 𝐶2𝑛+1 will be strong. Since the edge 𝑒2𝑛+1 is strong, 𝑣1and 𝑣2𝑛+1 can have same colors 

as mentioned. ∴  𝜒𝑓(𝐶𝑛) = 2. 

 

Subcase 2.4 : Suppose there is an odd number of weak edges in 𝑃2𝑛, and 𝑣1 & 𝑣2𝑛+1 have 

different basic colors, say (𝑐1, 1) and (𝑐2, 1) respectively. If 𝑒1 ∈ 𝑃2𝑛 is weak, then 

 𝑒2𝑛+1 ∈ 𝐶2𝑛+1 will be weak. Since 𝑒2𝑛+1 is weak, 𝑣1 will receive a fuzzy color of second 

color, say (𝑐2, 𝑓(𝑐2)), with membership value 1 −  𝐼(𝑣1, 𝑣2𝑛+1).  

∴  𝜒𝑓(𝐶𝑛) = 2. 

 

Case 3 : Suppose weak and strong edges are distributed in any sequence (except alternative 

distribution) in 𝐶𝑛. 

Let 𝐶𝑛 ∶  𝑣1𝑒1 . . . 𝑣𝑛𝑒𝑛𝑣1 be a fuzzy cycle of length 𝑛 and 𝐶𝑛 = 𝑃𝑛−1+ 𝑒𝑛, where  

𝑃𝑛−1 ∶  𝑣1𝑒1 . . . 𝑒𝑛 −1𝑣𝑛 be a fuzzy path of length 𝑛 −  1. By Theorem 4.1.1, 𝜒𝑓(𝑃𝑛−1) = 2  

and consider the edge 𝑒𝑛 = (𝑣𝑛, 𝑣1) ∈ 𝐶𝑛.  
Suppose the edge 𝑒𝑛 is weak. By Property 4.1.1 or Property 4.1.2, end vertices of 𝑃𝑛−1 can have 

different coloring possibilities and then by the procedure of fuzzy coloring, 𝜒𝑓(𝐶𝑛) = 2. 

(coloring procedure will be same as above). 

Suppose the edge 𝑒𝑛 is strong. By Property 4.1.1 or Property 4.1.2, end vertices of 𝑃𝑛−1 can have 

different coloring possibilities and then by the procedure of fuzzy coloring,  𝜒𝑓(𝐶𝑛) = 2. 

(coloring procedure will be same as above). 

Note : 

(i) When 𝑛 = 2 in 𝐶𝑛, 𝜒𝑓(𝐶2) = 2. 
 

(ii) When 𝑛 = 4 in 𝐶𝑛, 𝜒𝑓(𝐶4 ) = 2. 

 

4.3. The Chromatic Number of a Fuzzy Star 

Lemma 4.3.1. Let 𝑆𝑛 be a fuzzy star. If all edges are weak in 𝑆𝑛, then 𝜒𝑓(𝑆𝑛) = 1.  
 

Lemma 4.3.2.  Let 𝑆𝑛 be a fuzzy star. If all the edges are strong in 𝑆𝑛, then 𝜒𝑓(𝑆𝑛) = 2.  

(By Theorem 2.4). 
 

Theorem 4.3.1. Let 𝑆𝑛 be a fuzzy star.  If atleast one edge is strong in 𝑆𝑛, then 

𝜒𝑓(𝑆𝑛) = 2. (By the procedure 3.1). 

 

4.4. The Chromatic Number of a Fuzzy Wheel 

Lemma 4.4.1. Let 𝑊𝑛, 𝑛 ≥ 3 be a fuzzy wheel.  If all edges are weak in 𝑊𝑛,  

then 𝜒𝑓(𝑊𝑛) = 1. 
 

Lemma 4.4.2. Let 𝑊𝑛, 𝑛 ≥ 3 be a fuzzy wheel. If all the edges are strong in 𝑊𝑛, then  

(by Theorem 2.5) 

𝜒𝑓(𝑊𝑛) = {
4   𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3    𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

 

Theorem 4.4.1. Let 𝑊𝑛, 𝑛 ≥ 3 be a fuzzy wheel and 𝑊𝑛 = 𝑆𝑛−1⊕𝐶𝑛−1, where 𝑆𝑛−1 be a 

fuzzy star and 𝐶𝑛−1 be a fuzzy cycle of length 𝑛 − 1. If weak and strong edges are distributed in 

any sequence in 𝑊𝑛, then  
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𝜒𝑓(𝑊𝑛) =  

{
 
 

 
 4   𝑖𝑓 

𝑛 − 1

2
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶𝑛−1, 𝑤ℎ𝑒𝑟𝑒 𝑛(≥ 7)𝑖𝑠 𝑜𝑑𝑑,                              
 

3    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                                         

 

 

Proof. Let  𝑊𝑛 be a fuzzy wheel and 𝑊𝑛 = 𝑆𝑛−1⊕𝐶𝑛−1, where 𝑆𝑛−1be a fuzzy star and 

𝐶𝑛−1 be a fuzzy cycle of length 𝑛 − 1. Then by Theorem 4.3.1 we have,  

 𝜒𝑓(𝑆𝑛−1) =  2 and by Theorem 4.2.1 we have, 

 

 

𝜒𝑓(𝐶𝑛−1) =  

{
 
 

 
 3   𝑖𝑓 

𝑛 − 1

2
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶𝑛−1, 𝑤ℎ𝑒𝑟𝑒 𝑛(≥ 7)𝑖𝑠 𝑜𝑑𝑑,                              
 

2    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                                         

 

 

 

We know that by Theorem 2.8, 
 

𝜒𝑓(𝑊𝑛) = max{𝜒𝑓(𝑆𝑛−1),𝜒𝑓(𝐶𝑛−1)} + 1. (1) 

 

Case 1 : Suppose  
𝑛−1

2
 number of strong and weak edges are alternatively distributed 

in 𝐶𝑛−1, 𝑛(≥  7) is odd, then using the result (1), we have 

         𝜒𝑓(𝑊𝑛) = max{2, 3} +  1 

= 4. 
Case 2 : Suppose Case 1 is not occur, then using the result (1), we have 

         𝜒𝑓(𝑊𝑛) = max{2, 2} + 1 

= 3. 

 Note : 

(i) When 𝑛 = 3 in 𝑊𝑛, 𝜒𝑓(𝑊3) = 3. 
 

(ii) When 𝑛 = 5 in 𝑊𝑛, 𝜒𝑓(𝑊5 ) = 3. 

 

Note : Let 𝑊𝑛 be a fuzzy wheel and 𝑊𝑛 = 𝑆𝑛−1⊕𝐶𝑛−1 , where 𝑆𝑛−1 be a fuzzy star and 

𝐶𝑛−1 be a fuzzy cycle of length 𝑛 − 1. The edges of 𝑆𝑛−1 ∈ 𝑊𝑛 are referred to as the inner edges 

of 𝑊𝑛, while the edges of 𝐶𝑛−1 ∈ 𝑊𝑛 are referred to as the outer edges of  𝑊𝑛. 
 

Corollary 4.4.1.1. Let 𝑊𝑛 be a fuzzy wheel and  𝑊𝑛 = 𝑆𝑛−1⊕𝐶𝑛−1, where 𝑆𝑛−1 be a fuzzy 

star and 𝐶𝑛−1 be a fuzzy cycle of length 𝑛 − 1. If weak and strong edges are distributed in 

any sequence in 𝐶𝑛−1 ∈ 𝑊𝑛, or if all the outer edges of 𝑊𝑛 are strong and all the inner edges 

of 𝑊𝑛 are weak,, then 𝜒𝑓(𝑊𝑛) = 𝜒𝑓(𝐶𝑛−1). 
 

Corollary 4.4.1.2. Let 𝑊𝑛 be a fuzzy wheel and  𝑊𝑛 = 𝑆𝑛−1⊕𝐶𝑛−1, where 𝑆𝑛−1 be a fuzzy 

star and 𝐶𝑛−1  be a fuzzy cycle of length 𝑛 − 1. If weak and strong edges are distributed in 

any sequence in 𝑆𝑛−1 ∈ 𝑊𝑛, or if all the inner edges of  𝑊𝑛 are strong and all the outer 

edges of 𝑊𝑛 are weak, then 𝜒𝑓(𝑊𝑛) = 𝜒𝑓(𝑆𝑛−1). 
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Corollary 4.4.1.3. Let 𝑊𝑛 be a fuzzy wheel and  𝑊𝑛 = 𝑆𝑛−1⊕𝐶𝑛−1, where 𝑆𝑛−1 be a fuzzy 

star and 𝐶𝑛−1 be a fuzzy cycle, having 𝜒𝑓(𝐶𝑛−1) = 2. Suppose all the outer edges of  𝑊𝑛 

are strong and the inner edges of 𝑊𝑛, which connect vertices with the same color, are weak. 

Then, 𝜒𝑓(𝑊𝑛) = 2.  

 

4.5. The Chromatic Number of a Fuzzy Complete Graph 

Lemma 4.5.1. Let 𝐾𝑛 be a complete fuzzy graph. If all edges are weak in 𝐾𝑛, then  
𝜒𝑓(𝐾𝑛) = 1. 
 

Lemma 4.5.2. Let 𝐾𝑛 be a complete fuzzy graph. If all the edges are strong in 𝐾𝑛, then 

𝜒𝑓(𝐾𝑛) = 𝑛. (By Theorem 2.6). 
 

Note : 

(i) 𝐾2𝑛+1 = ⊕ n𝐶2𝑛+1 (by Theorem 2.7). In 𝐾2𝑛+1, the edges of the outer cycle 𝐶2𝑛+1 ∶
𝑣1𝑒1𝑣2 . . . 𝑣2𝑛+1𝑒2𝑛+1𝑣1 are referred to as the outer edges of 𝐾2𝑛+1, and the edges of 

other cycles in 𝐾2𝑛+1 are referred to as the inner edges of 𝐾2𝑛+1. 

(ii) 𝐾2𝑛 = 𝐶2n⊕𝑛𝑃1 (by Theorem 2.7). In 𝐾2𝑛, the edges of the outer cycle 𝐶2𝑛 ∶
𝑣1𝑒1𝑣2 . . . 𝑣2𝑛𝑒2𝑛𝑣1 are referred to as the outer edges of 𝐾2𝑛, while the edges of other cycles 

in 𝐾2𝑛 and the edges of a perfect matching in 𝐾2𝑛 are referred to as the inner edges of 𝐾2𝑛. 
 

Theorem 4.5.1. Let 𝐾𝑛 be a complete fuzzy graph. If weak and strong edges are distributed in 

any sequence in 𝐾𝑛, then, 𝜒𝑓(𝐾𝑛) = 𝑛 − ⌊
𝑚

2
⌋, where 𝑚 (𝑚 < 𝑛)be the number of vertices 

having atleast one weak incident edge. 
 

Proof. Let  𝐾𝑛 be a complete fuzzy graph and 𝐶𝑛 ∶ 𝑣1𝑒1𝑣2 . . . 𝑣𝑛𝑒𝑛𝑣1 be the outer cycle of 

𝐾𝑛. 

 

Case 1 : Let 𝑒1𝑒2 . . . 𝑒𝑚−1 ∈ 𝐶𝑛 (𝑚 < 𝑛) be the weak edges in 𝐾𝑛 and the remaining edges in 

𝐾𝑛 are strong. 

Color the vertex 𝑣1 ∈ 𝐶𝑛 with a basic color, say (𝑐1, 1). Since the edge 𝑒1 ∈ 𝐶𝑛 is weak, 

vertex 𝑣2 ∈ 𝐶𝑛 will receive a fuzzy color of the same basic color 𝑐1, say (𝑐1, 𝑓(𝑐1)) with 

membership value 1 − 𝐼(𝑣1, 𝑣2). As the inner edge (𝑣1, 𝑣3) of 𝐾𝑛 is strong and since the edge 

(𝑣2, 𝑣3) = 𝑒2 ∈ 𝐶𝑛 is weak, vertex 𝑣3 ∈ 𝐶𝑛 will receive a fuzzy color of different basic color 𝑐2, 

say (𝑐2, 𝑓(𝑐2)) with membership value 1 − 𝐼(𝑣2, 𝑣3). Consequently, vertex 𝑣4 ∈ 𝐶𝑛 will also 

receive a fuzzy color of the same color 𝑐2, say (𝑐2, 𝑓(𝑐2)) with membership value 1 − 𝐼(𝑣3, 𝑣4). 
Extend the coloring process up to 𝑚 vertices (by the procedure 3.1). 

 

Subcase 1.1 : 𝑚 is even. 

The end vertices of each edges 𝑒𝑖, 𝑖 =  1, 3, . . . , 𝑒𝑚−1 will receive fuzzy colors of same   basic 

colors, say (𝑐𝑗, 𝑓(𝑐𝑗)), 𝑗 = 1, 2, . . . ,
𝑚

2
. Therefore, 

𝑚

2
 different colors are used to color the 𝑚 

vertices. Since each 𝑛 −𝑚 vertices are strongly adjacent (two vertices are connected by a strong 

edge) to the remaining 𝑛 − 1 vertices of 𝐾𝑛, they will receive 𝑛 −𝑚 different colors and will 

not receive any colors that have already been used(by the procedure 3.1). Hence, 

 

 𝜒𝑓(𝐾𝑛) = (𝑛 − 𝑚) +
𝑚

2
 

      =
2𝑛 −𝑚

2
 

       ≡ 𝑛 − ⌊
𝑚

2
⌋. 
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Subcase 1.2 : 𝑚 is odd. 

The end vertices of each edges 𝑒𝑖, 𝑖 =  1, 3, . . . , 𝑒𝑚−2 will receive fuzzy colors of same basic 

colors, say (𝑐𝑗 , 𝑓(𝑐𝑗)), 𝑗 = 1, 2, . . . , ⌊
𝑚

2
⌋ + 1. Therefore, ⌊

𝑚

2
⌋ + 1 different colors are used to 

color the 𝑚 vertices. Since each 𝑛 −𝑚 vertices are strongly adjacent (two vertices are connected 

by a strong edge) to the remaining 𝑛 − 1 vertices of 𝐾𝑛, they will receive 𝑛 −𝑚 different colors 

and will not receive any colors that have already been used(by the procedure 3.1). Hence, 

 

     𝜒𝑓(𝐾𝑛) = (𝑛 − 𝑚) + ⌊
𝑚

2
⌋ + 1 

                             ≡  𝑛 − ⌊
𝑚

2
⌋. 

 

 
Figure 5.  Complete Fuzzy Graph. 

 

Case 2 : Let all the inner edges and some outer edges in 𝐾𝑛 be strong, while the remaining outer 

edges in 𝐾𝑛 are weak. 

 

Case 3 : Let some inner and outer edges in 𝐾𝑛 be weak, while the remaining edges in 𝐾𝑛 are 

strong. 

In both cases (case 2 & case 3), color the end vertices of weak edges first. Then, color the 

remaining vertices according to the procedure described in the previous case. Then 

        𝜒𝑓(𝐾𝑛) = 𝑛 − ⌊
𝑚

2
⌋. 

 

 

5. Application of Fuzzy Coloring 

In this study, we analysed the literacy rates of various states in India and explored the relationships 

between these states with the goal of improving literacy. We are working on finding a solution for 

how many states can offer high-quality education to improve their literacy rates by implementing 

educational quotas for other states. This concept is demonstrated using fuzzy coloring. For that, 

we created a fuzzy graph model, taking into account some states in India (Kerala, Tamil Nadu, 

Karnataka, Andhra Pradesh, Telangana, Maharashtra, Lakshadweep) as vertices, with edges 

connecting them, if they have mutual cooperation to improve the literacy of the states. The 

membership values of the vertices represent the literacy rates of the states (with respect to educational 

literacy, computer literacy, media literacy, linguistic literacy, health literacy, critical literacy, 

statistical literacy, etc). The membership value of an edge indicates the level of relationship between 

the states aimed at improving literacy (by offering the educational quotas for other states, empowering 

communities such as those focused on rural literacy development, supporting disabled communities, 

and promoting women’s literacy initiatives, etc). i.e., Here we are considering the relationships 

between some states in  India that offer educational quotas for other states to help improve their 

literacy rates. 
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 Let the states Kerala, Tamil Nadu, Karnataka, Andhra Pradesh, Telangana, Maharashtra, and 

Lakshadweep are considered as vertices and are denoted by 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, and 𝐺 respectively 

(refer Figure 6). The literacy rates of these states will be the membership values of 

each vertex, which are 0.8, 0.7, 0.5, 0.7, 0.6, 0.6, and 0.5 respectively. Two vertices are 

connected, if and only if they offer educational quotas to each other.  

   

Let the edges (𝐴,𝐵), (𝐴, 𝐶), (𝐴, 𝐹 ), (𝐵, 𝐶), (𝐵,𝐷), (𝐵, 𝐸),(𝐶,𝐷), (𝐶, 𝐹), (𝐷, 𝐸), (𝐷, 𝐹),
(𝐸, 𝐹) represent the relation between states that offer educational quotas to each other (refer 

Figure 7). The membership values of each edge, which denote the strength of the relationship 

between the states in providing educational quotas, are 0.7, 0.2, 0.6, 
0.3, 0.7, 0.4, 0.5, 0.4, 0.6, 0.3, and 0.5 respectively. Moreover, the edges (𝐴, 𝐵), (𝐴, 𝐹),
(𝐵, 𝐶), (𝐵,𝐷), (𝐶,𝐷), (𝐷, 𝐸), (𝐸, 𝐹) are strong, representing strong relations between the 

states and the edges (𝐴, 𝐶), (𝐵, 𝐸), (𝐶, 𝐹), (𝐷, 𝐹) are weak, indicating weaker relations between 

the states compared to the other relations. Since Lakshadweep has no relation with other states in 

providing the educational quota, the vertex 𝐺 is disconnected. So the graphical representation of this 

model problem contains two components 𝐺[𝑉1] and 𝐺[𝑉2] (refer Figure 7).  Now, by 

calculating the chromatic number of this fuzzy graph, we can determine how many states offer high- 

quality education to raise their literacy rates by implementing educational quotas for other states. 

 

 

 

 

 
Figure 6. Let A,B,C,D,E,G, and F are the few sates of India. 
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Figure 7. A fuzzy graph representation of Figure 6. 

 

First, consider the connected component 𝐺[𝑉1] for coloring. It has both strong and weak edges. So 

we can color the graph by Case 3.1.1 & Case 3.1.2 of fuzzy coloring of fuzzy graph. First color 

the vertex 𝐴 with arbitrary basic color, say (𝐺, 1). As the edge  (𝐴,𝐵) is strong, the vertex 

𝐵 will receive a different basic color, say (𝑅, 1). Since the edge (𝐴, 𝐶) is weak, the vertex 𝐶 

will receive a fuzzy color corresponding to the color of the vertex 𝐴, say (𝐺, 0.6). Similarly 

we can color the vertex 𝐸 with a fuzzy color (𝑅, 0.4). Since the edges (𝐵, 𝐷) and (𝐶,𝐷) are 

strong, the vertex 𝐷 will receive another basic color say, (𝑌, 1). Now consider the vertex 𝐹 

for coloring. Coloring of the vertex 𝐹 depends on the weak incident edges (𝐶,𝐹) and (𝐷,𝐹). 
Then vertex 𝐹 is colored with a fuzzy color that corresponds to one of the colors of the two vertices. 

The membership value of the fuzzy color is determined by calculating the strengths of each 

weak edges. Since the edge (𝐷,𝐹) has minimum strength, 𝐹 will receive a fuzzy color 

(𝑌, 0.5). Now consider the second component 𝐺[𝑉2] for coloring. Since the component 𝐺[𝑉2] is a 

trivial graph, the vertex 𝐺 can be colored with any color used in the coloring of the component 

𝐺[𝑉1]. Hence, the vertex 𝐺 is colored with a basic color (𝑅, 1). Then by Corollary 3.1.1, 

𝜒𝑓(𝐺) = 𝑚𝑎𝑥{3, 1} = 3. i.e., the graph 𝐺 is colored with only three colors namely Green, 

Red and Yellow. 

 

 

 
Figure 8. Perfect fuzzy coloring of the fuzzy graph G. 
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Figure 9. Representation of fuzzy coloring of few state of India. 

 

In this study, the chromatic number of 𝐺 is three. Therefore, three states can offer high-quality 

education to improve their literacy rates by implementing educational quotas for other states. 

Therefore, to achieve high-quality education, a state must either forge strong bonds with any of 

these three states or strengthen existing relationships with other states by enhancing educational 

quotas. 

 

6. Conclusion 

In this paper, we discussed the key concepts essential for fuzzy coloring and introduced an improved 

procedure for a fuzzy coloring of fuzzy graphs. The chromatic numbers of certain families of fuzzy 

graphs are found by using fuzzy colors based on the strength of an edge incident to a vertex. 

In our further study, it is proposed to work on fuzzy coloring of product graphs and we analyse 

the concept of chromatic number on it. 
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